Researchers Develop Ginseng-Fortified Milk to Improve Cognitive Function
Possible Market for New Functional Food Reported in the *Journal of Dairy Science®*

Amsterdam, The Netherlands, July 23, 2012 – American ginseng is reported to have neurocognitive effects, and research has shown benefits in aging, central nervous system disorders, and neurodegenerative diseases. The challenges of incorporating ginseng into food are twofold: it has a bitter taste, and food processing can eliminate its healthful benefits. Reporting in the August issue of the *Journal of Dairy Science®*, a group of scientists has formulated low-lactose functional milk that maintained beneficial levels of American ginseng after processing. An exploratory study found the product was readily accepted by a niche group of consumers.

“Our goal was to develop low-lactose milk that could be consumed by the elderly to improve cognitive function,” reports lead investigator S. Fiszman, PhD, of the Instituto de Agroquimica y Tecnologia de Alimentos (IATA), Consejo Superior de Investigaciones Cientificas (CSIC), Patema (Valencia), Spain. “Consumers who were interested in the health benefits of ginseng rated our product quite highly.”

Because older people frequently have trouble digesting milk products, the researchers developed a low-lactose formula. American ginseng was added, and then the milk was sterilized by ultra-high temperature processing (UHT), which prolongs shelf life. Analysis found that sufficient levels of ginseng remained in the milk after treatment to improve cognitive function as reported in the literature.

To reduce the bitter taste of American ginseng, the investigators developed samples with vanilla extract and sucralose, a zero-calorie artificial sweetener. In a preliminary study, 10 tasters with a good ability to discriminate between flavors compared low lactose UHT milk without any additives (the control) to low lactose milk with ginseng extract, vanilla aroma, and sucralose added before UHT treatment. They developed a list of 10 attributes that described the sample: color, sweet odor, milk flavor, vanilla flavor, metallic/root flavor, sweetness, bitterness, aftertaste, astringency, and viscosity. They then rated the
intensity of each attribute for five samples; the control; the control with ginseng extract, vanilla aroma, and sucralose added; the control with ginseng extract added; the control with vanilla and ginseng extract; and the low lactose milk with ginseng extract; vanilla aroma; and sucralose added before UHT treatment.

In a second study, 100 participants were asked, on a scale of one to five, how willing they would be to consume a “highly digestible semi-skimmed milk,” and a “highly digestible semi-skimmed milk enriched with ginseng extract that would improve cognitive function.” Then, they tasted and rated, on a scale of one to nine, the overall acceptability of the control milk and the low lactose milk with ginseng extract, vanilla aroma, and sucralose added before UHT treatment.

Both the presence of ginseng and the thermal treatment affected some sensory properties of the milk. The addition of ginseng significantly increased the perceived light brown color in the flavored and unflavored samples, and was highest in the reduced-lactose milk with ingredients added before the UHT treatment. The sweet odor was more intense in flavored samples, but decreased slightly in the samples of milk with ingredients added before UHT treatment. Bitterness was clearly perceived in the samples containing ginseng additives, but was lower in flavored samples, indicating that the vanilla aroma and sucralose masked, to some extent, the bitter taste caused by ginseng extract.

Consumer responses varied greatly, depending on interest in the product. 78% indicated that they would be likely to consume the highly digestible milk, and after tasting the product, 87% of them indicated they would buy the sample. 47% indicated they were not interested in milk enriched with ginseng, and after tasting, they gave it a low acceptability rating. However, for the 32% of consumers who did express an interest in the product, 75% declared they would buy it.

“Drinking 150 to 300 mL of this ginseng-enriched milk would provide the amount indicated to be effective for improving cognitive functions. Combined with the low levels of lactose, this makes the drink an appropriate functional beverage for the elderly,” says Dr. Fiszman. “Among consumers more likely to consume ginseng products, the newly developed milk was well accepted. The addition of more congruent flavors such as chocolate, citrus, or coffee, could be more effective in masking non-milk-related sensory attributes, Other alternatives could be investigated.”

Commenting on the studies, Susan Duncan, PhD, professor, Department of Food Science & Technology, Virginia Tech, noted, “With the combination of intrinsic health benefits in milk and these additional ingredients, milk becomes an easy way to deliver valuable functional ingredients and the functional benefits of milk components. Diversifying the product line for milk and dairy products has a number of benefits, including market and consumer visibility and perception.”

NOTES FOR EDITORS


Full text of the article is available to credentialed journalists upon request. Contact Verity Kerkhoff at +31-20-485-3310 or jdsmedia@elsevier.com to obtain copies. Journalists wishing to set up interviews with the authors should contact sfiszman@iata.csic.es
ABOUT THE JOURNAL OF DAIRY SCIENCE (JDS)
The official journal of the American Dairy Science Association, Journal of Dairy Science (JDS) is the leading general dairy research journal in the world. JDS readers represent education, industry, and government agencies in more than 70 countries with interests in biochemistry, breeding, economics, engineering, environment, food science, genetics, microbiology, nutrition, pathology, physiology, processing, public health, quality assurance, and sanitation. JDS is ranked number 2 in the Agriculture, Dairy and Animal Science category of the Journal Citation Reports® 2011, published by Thomson Reuters, with an Impact Factor of 2.564. www.journalofdairyscience.org

ABOUT THE AMERICAN DAIRY SCIENCE ASSOCIATION (ADSA)
The American Dairy Science Association (ADSA) is an international organization of educators, scientists and industry representatives who are committed to advancing the dairy industry and keenly aware of the vital role the dairy sciences play in fulfilling the economic, nutritive, and health requirements of the world's population. It provides leadership in scientific and technical support to sustain and grow the global dairy industry through generation, dissemination, and exchange of information and services. Together, ADSA members have discovered new methods and technologies that have revolutionized the dairy industry. www.adsa.org

ABOUT ELSEVIER
Elsevier is a world-leading provider of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including The Lancet (www.thelancet.com) and Cell (www.cell.com), and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier’s online solutions include ScienceDirect (www.sciencedirect.com), Scopus (www.scopus.com), Reaxys (www.reaxys.com), MD Consult (www.mdconsult.com) and Mosby’s Nursing Suite (www.confidenceconnected.com), which enhance the productivity of science and health professionals, and the SciVal suite (www.scival.com) and MEDai’s Pinpoint Review (www.medai.com), which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier (www.elsevier.com) employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC (www.reedelsevier.com), a world-leading publisher and information provider, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).