Large Dairy Herd Management
Third edition
Edited by David K. Beede
Cover images

Top left: Example of immunofluorescent staining in prepubertal bovine mammary tissue. The cross section of the developing duct shows the expression of p63 (red), which indicates myoepithelial nuclei, estrogen receptor (green), about 50% of the epithelial cells, and Ki67 (yellow), a marker for cell proliferation; DAPI staining (blue) is a general DNA stain that labels all cell nuclei. [Chapter 9-59: Mammary development in calves and heifers; Figure 4D]

Top center: The daily trail to (and from) milking. [Chapter 10-67: Mastitis control in pasture and seasonal systems; Figure 3]

Top right: Cow brushes are clearly a valued resource as they are used voluntarily by cows and are required by some voluntary assurance programs. Photo credit: DeLaval, Tumba, Sweden. [Chapter 11-71: Assuring and verifying dairy cattle welfare; Figure 2]

Bottom left: The bedding material commonly recommended for controlling environmental mastitis is washed sand. [Chapter 10-65: Practical approaches to environmental mastitis control; Figure 3]

Bottom center: Life cycle of a liver fluke. [Chapter 12-81: Parasite control in large dairy herds; Figure 2]

Bottom right: Studies have shown that positive handling is correlated with cows having low fear responses to people and higher milk production. Some animal welfare standards now include a standardized test of avoidance distance to people as a way of screening for appropriate handling and good human–animal relationships on farms. Photo credit: University of British Columbia (UBC) Animal Welfare Program. [Chapter 11-71: Assuring and verifying dairy cattle welfare; Figure 3]
Large Dairy Herd Management
Third Edition

CONTENTS

Preface to the first edition ix • Preface to the first revised edition x
Preface to the third edition xi • Acknowledgments xiv
Editors xv • Authors xvii • External reviewers xviii
Abbreviations xix • Sponsorship xx

Section 1: Building Sustainability and Capacity 1
Preface D. K. Beede 1
1-01: Dairy sector across the world: National trends and opportunities for sustainable growth
M. A. Wattiaux 3
1-02: Assessing carbon footprints of dairy production systems
C. A. Rotz and G. Thoma 19
1-03: Water quality concerns associated with dairy farms
K. F. Knowlton and P. P. Ray 33
1-04: Impacts and mitigation of emissions from dairy feeds on air quality
F. Mitloehner and M. Cohen 47
1-05: Feeding and breeding to improve feed efficiency and sustainability
M. J. VandeHaar and R. J. Tempelman 61

Section 2: Large Herd Systems of the World 69
Preface S. P. Washburn 69
2-06: Large dairy herd design and systems in temperate and cold climates
G. A. Jones and D. W. Kammel 71
2-07: Large confined dairy herd systems in hot climates
L. A. Whitlock, J. G. Martin III, and D. V. Armstrong 83
2-08: Seasonal pasture-based dairy production systems
J. R. Roche, S. P. Washburn, D. P. Berry, D. J. Donaghy, and B. Horan 99
2-09: Organic dairy production systems
C. A. Daley, B. J. Heins, K. J. Soder, U. Sorge, A. F. Brito,
K. A. E. Mullen, and S. P. Washburn 115
2-10: Dairy systems with automatic milking (robots)
J. Rodenburg, N. A. Lyons, and K. L. Kerrisk 127
2-11: Beef production from the dairy herd
D. M. Schaefer, H. Chester-Jones, and B. Boetel 143
Section 3: Facilities and Environment 165

Preface
J. M. Zulovich and J. P. Harner

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-12</td>
<td>A systems approach to dairy farmstead design</td>
<td>D. W. Kammel, J. M. Zulovich, and J. P. Harner</td>
<td>167</td>
</tr>
<tr>
<td>3-13</td>
<td>Systems approach to designing milking centers and other dairy systems</td>
<td>J. M. Zulovich, J. P. Harner, and D. W. Kammel</td>
<td>185</td>
</tr>
<tr>
<td>3-14</td>
<td>Whole-farm nutrient balance: Systems approach to dairy nutrient planning</td>
<td>R. K. Koelsch and Q. M. Ketterings</td>
<td>193</td>
</tr>
<tr>
<td>3-15</td>
<td>Manure handling, treatment, and storage systems</td>
<td>D. M. Kirk</td>
<td>211</td>
</tr>
<tr>
<td>3-16</td>
<td>Transition cow barn design and management</td>
<td>G. A. Jones and D. W. Kammel</td>
<td>223</td>
</tr>
<tr>
<td>3-17</td>
<td>Mature cow housing systems</td>
<td>J. T. Tyson</td>
<td>239</td>
</tr>
<tr>
<td>3-18</td>
<td>Replacement heifer facilities</td>
<td>D. F. McFarland</td>
<td>255</td>
</tr>
<tr>
<td>3-19</td>
<td>Feed center system design and management</td>
<td>J. P. Harner, J. M. Zulovich, D. W. Kammel, and J. T. Tyson</td>
<td>279</td>
</tr>
</tbody>
</table>

Section 4: Milk Markets and Marketing 297

Preface
N. R. St-Pierre

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-20</td>
<td>Changing global dairy markets: Comparison of dairy systems and economics</td>
<td>T. Hemme</td>
<td>299</td>
</tr>
<tr>
<td>4-21</td>
<td>International and domestic dairy market landscapes</td>
<td>M. W. Stephenson</td>
<td>307</td>
</tr>
<tr>
<td>4-22</td>
<td>Pricing farm milk in the United States</td>
<td>C. S. Thraen</td>
<td>319</td>
</tr>
</tbody>
</table>

Section 5: Genetic Selection Programs and Breeding Strategies 329

Preface
K. A. Weigel

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-23</td>
<td>Improving production efficiency through genetic selection</td>
<td>J. B. Cole and D. M. Spurlock</td>
<td>331</td>
</tr>
<tr>
<td>5-24</td>
<td>Improving health, fertility, and longevity through genetic selection</td>
<td>R. R. Cockrum, K. L. Parker Gaddis, and C. Maltecca</td>
<td>341</td>
</tr>
<tr>
<td>5-25</td>
<td>Making effective sire selection and corrective mating decisions</td>
<td>K. A. Weigel and T. J. Halbach</td>
<td>357</td>
</tr>
<tr>
<td>5-26</td>
<td>Capitalizing on breed differences and heterosis</td>
<td>C. D. Dechow and L. B. Hansen</td>
<td>369</td>
</tr>
<tr>
<td>5-27</td>
<td>Genomic selection and reproductive technologies to optimize herd replacements</td>
<td>F. Peñagaricano, A. De Vries, and D. T. Bennink</td>
<td>379</td>
</tr>
<tr>
<td>5-28</td>
<td>Genomic selection and reproductive technologies to produce elite breeding stock</td>
<td>H. J. Huson and J. Lamb</td>
<td>389</td>
</tr>
</tbody>
</table>
Section 6: Calves and Replacements

Preface
R. E. James

6-29: Management of the newborn calf
S. M. Godden

6-30: Nutrition of the preweaned calf
M. E. Van Amburgh

6-31: Calf transition: Managing and feeding the calf through weaning
A. Bach, M. A. Khan, and E. K. Miller-Cushon

6-32: Feeding management of the dairy heifer from 4 months to calving
P. C. Hoffman

6-33: Disease prevention and control for the dairy heifer
G. W. Smith

6-34: Economic considerations regarding the raising of dairy replacement heifers
M. W. Overton and K. C. Dhuyvetter

6-35: Facility systems for the young dairy calf: Implications for animal welfare and labor management
M. I. Endres and R. E. James

Section 7: Reproduction and Reproductive Management

Preface
W. W. Thatcher

7-36: Estrous cycle of heifers and lactating dairy cows: Ovarian and hormonal dynamics and estrous cycle abnormalities
R. Sartori, J. R. Pursley, and M. C. Wiltbank

7-37: Reproductive programs to maximize fertility of dairy cows
P. M. Fricke

7-38: Reproductive management of seasonally calving herds
S. McDougall

7-39: Understanding and managing postpartum uterine disease
S. J. LeBlanc, V. S. Machado, and R. C. Bicalho

7-40: Monitoring and quantifying the value of change in reproductive performance
M. W. Overton and V. E. Cabrera

7-41: The male component of dairy herd fertility
J. C. Dalton, J. M. DeJarnette, R. G. Saacke, and R. P. Amann

7-42: Physiological approaches to improving fertility during heat stress
P. J. Hansen

7-43: Effect of environmental, nutritional, and management factors during late gestation on future performance of the cow and her calf
G. E. Dahl

7-44: Current and emerging reproductive technologies useful for genetic improvement
P. J. Hansen

Section 8: Nutrition and Nutritional Management

Preface
R. J. Grant and H. M. Dann

8-45: Drinking water for dairy cattle
P. J. Kononoff, D. D. Snow, and D. A. Christensen
8-46: Protein and amino acid nutrition
G. I. Zanton 625

8-47: Carbohydrate nutrition
D. P. Casper 639

8-48: Lipid and fat nutrition
K. J. Harvatine 655

8-49: Mineral nutrition
J. P. Goff 667

8-50: Vitamin nutrition
G. Ferreira and W. P. Weiss 689

8-51: Nutritional management strategies for dry and fresh cows
H. M. Dann 699

8-52: Variability in feed sampling and analyses
N. R. St-Pierre and W. P. Weiss 713

8-53: Silage harvesting and storage
L. Kung Jr. and R. E. Muck 723

8-54: Utilization of by-product and co-product feeds
B. J. Bradford and A. J. Carpenter 739

8-55: Total mixed rations and feed delivery systems
T. J. Oelberg and W. C. Stone 751

8-56: Nutritional diagnostic troubleshooting
W. C. Stone and S. A. Mosley 771

8-57: Ensuring access to feed to optimize health and production of dairy cows
T. J. DeVries 787

8-58: Feeding the herd for maximum fertility
J. E. P. Santos and C. R. Staples 799

Section 9: Lactation and Milking Systems 813

Preface
R. M. Bruckmaier 813

9-59: Mammary development in calves and heifers
R. M. Akers 815

9-60: Regulation of the lactating mammary gland
L. L. Hernandez, G. E. Dahl, and R. J. Collier 829

9-61: Oxytocin and the regulation of milk ejection during machine milking of dairy cows
R. M. Bruckmaier 841

9-62: Milking machine management
D. Reinemann 853

9-63: Milking systems for large dairy herds
O. Pichler and B.-G. Mårtensson 867

Section 10: Mastitis and Milk Quality 885

Preface
J. S. Hogan 885

10-64: Contagious mastitis: Staphylococcus aureus, Streptococcus agalactiae, and Mycoplasma species
J. R. Middleton and L. K. Fox 887

10-65: Practical approaches to environmental mastitis control
J. S. Hogan 897
10-66: Modulation of the bovine mammary gland
S. C. Nickerson and L. M. Sordillo
907

10-67: Mastitis control in pasture and seasonal systems
J. E. Hillerton
921

10-68: Practical approaches to mastitis therapy on large dairy herds
P. L. Ruegg
933

10-69: Milk quality and safety
S. P. Oliver
949

10-70: Using herd somatic cell counts and clinical mastitis reporting to monitor herd performance and effect change
M. A. Kirkpatrick and J. D. Olson
961

Section 11: Animal and Herd Welfare
991

Preface
T. J. DeVries
991

11-71: Assuring and verifying dairy cattle welfare
D. Fraser and K. E. Koralesky
993

11-72: Standard operating procedures for compromised cattle
J. K. Shearer and K. D. Vogel
1005

11-73: Proper handling techniques for dairy cattle
U. S. Sorge
1027

11-74: Elective procedures in dairy cattle
J. Walker and J. Coetzee
1037

Section 12: Herd Health
1053

Preface
C. A. Risco
1053

12-75: Behavior of transition cows and relationship with health
K. L. Proudfoot and J. M. Huzzey
1055

12-76: Management of transition cows to optimize health and production
D. V. Nydam, T. R. Overton, J. A. A. McArt, M. M. McCarthy, B. Leno, and S. Mann
1067

12-77: Minimizing postcalving metabolic disorders
G. R. Oetzel
1077

12-78: Immunology and vaccination of dairy cattle
V. Cortese
1087

12-79: Managing the herd to minimize lameness
J. K. Shearer, M. F. Hutjens, and M. I. Endres
1093

12-80: An overview of paratuberculosis infection: From mycobacteria to dairy populations
P. J. Pinedo and D. O. Rae
1103

12-81: Parasite control in large dairy herds
R. S. Rew
1115

Section 13: Business and Economic Analysis and Decision-Making
1129

Preface
A. De Vries
1129

13-82: Benchmarking dairy farm financial performance
C. A. Wolf and N. Olynk Widmar
1131

13-83: Dairy risk management
J. VanSickle
1141
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-84</td>
<td>Dairy decision making in a financial context</td>
<td>J. Fetrow and S. Eicker</td>
<td>1149</td>
</tr>
<tr>
<td>13-85</td>
<td>The economic consequences of production diseases in dairy farming</td>
<td>H. Hogeveen, F. J. S. van Soest, and M. van der Voort</td>
<td>1165</td>
</tr>
<tr>
<td>1149</td>
<td>Section 14: Effective Management of Farm Employees</td>
<td></td>
<td>1177</td>
</tr>
<tr>
<td>1177</td>
<td>Preface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1178</td>
<td>14-86: Leadership for the farm business</td>
<td>R. A. Milligan</td>
<td>1179</td>
</tr>
<tr>
<td>1179</td>
<td>14-87: Building the team: Continuous recruitment, selection, and onboarding</td>
<td>M. R. O’Rourke</td>
<td>1189</td>
</tr>
<tr>
<td>1189</td>
<td>14-88: Compensation, bonuses, and benefits—Key start to building a committed, productive workforce</td>
<td>F. D. Soriano</td>
<td>1201</td>
</tr>
<tr>
<td>1201</td>
<td>14-89: Building a culture of learning and contribution by employees</td>
<td>P. T. Durst and S. J. Moore</td>
<td>1211</td>
</tr>
<tr>
<td>1211</td>
<td>14-90: Setting goals and using performance feedback effectively</td>
<td>J. Estrada</td>
<td>1221</td>
</tr>
<tr>
<td>1221</td>
<td>14-91: Overcoming challenges and building team cohesion</td>
<td>B. Dartt</td>
<td>1231</td>
</tr>
<tr>
<td>1231</td>
<td>14-92: Effective and efficient operations management for farm staff</td>
<td>K. I. Carson</td>
<td>1239</td>
</tr>
<tr>
<td>1239</td>
<td>Section 15: Precision Management Technologies</td>
<td></td>
<td>1249</td>
</tr>
<tr>
<td>1249</td>
<td>Preface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1251</td>
<td>15-94: Automated detection and prediction of estrus as a complementary technology for reproductive management</td>
<td>J. O. Giordano and P. M. Fricke</td>
<td>1265</td>
</tr>
<tr>
<td>1279</td>
<td>15-96: Principles to determine the economic value of sensor technologies used on dairy farms</td>
<td>M. van der Voort, H. Hogeveen, and C. Kamphuis</td>
<td>1293</td>
</tr>
<tr>
<td>1293</td>
<td>15-97: Automated on-farm milk component testing for precision management of feeding, reproduction, and health</td>
<td>D. M. Barbano</td>
<td>1305</td>
</tr>
<tr>
<td>1305</td>
<td>Index</td>
<td></td>
<td>1315</td>
</tr>
</tbody>
</table>
Preface to the first edition (1978)

With increased specialization in most of the nation’s Grade A dairies, the daily mechanics of feeding, breeding, milking, and health care of large groups of cows and the planning for labor, facilities, and capital to handle them have made management of large dairies as complex as management of large corporations. Indeed, specialization and size have developed because some efficiencies of scale exist but, as a result, dairymen managing hundreds of cows encounter problems never dreamed of by the manager of the family dairy of years past. It is to this level of dairy management (dairies with more than 200 milking cows) that this book is directed.

Florida has had a long history of large dairies. On January 1, 1978, Florida had 401 dairies averaging 491 cows per dairy with approximately 60 dairies of over 1,000 cows. Almost all other states have some dairies that are in this large-herd category and many more growing in that direction. Thus, across the nation dairy scientists and management experts have been spending proportionately more of their time in trying to advance the technology necessary to meet these management needs. This symposium was conceived to attempt to integrate the recommendations of specialists throughout the U.S. into a much more complete coverage of topics important to large dairy herd management than previously had been accomplished.

Therefore, the dairy production faculty of the Dairy Science Department of the University of Florida organized a symposium from which the proceedings could be published in book form. This book is the result of that symposium which was held January 18-21, 1976, in Gainesville, Florida. Revision and updating of the original manuscripts continued until the final setting of type, so that the information contained herein would be as current as possible.

More than 70 speakers participated in the symposium, making it truly a national meeting involving people who are well recognized experts in their fields. These speakers were asked to direct their comments toward applied objectives. Several basic science sections have been added to the book to supply the reader with background, but the goal was to provide in one text the best possible information that could be applicable to the management of large dairies. Thus, the material should be useful to teachers, extension educators, agricultural instructors, dairy herd owners and managers, and industry leaders associated with the business side of dairying.

The dairy production faculty of the Dairy Science Department of the University of Florida wishes to express appreciation to the speakers at that symposium (the authors of various chapters in this text) for their willingness to participate and for their outstanding contributions.

Several private corporations and dairy cooperatives served as contributing sponsors. They were: The Upjohn Company, Kalamazoo, Michigan; Independent Dairy Farmers Association, Ft. Lauderdale, Florida; Upper Florida Milk Producers Association, Jacksonville, Florida; Tampa Independent Dairy Farmers Association, Tampa, Florida; American Breeders Service, De Forest, Wisconsin; and Badger Northland Inc., Kaukauna, Wisconsin. Additional contributors include: Oswalt Division, Butler Mfg. Company, Garden City, Kansas; Moorman Manufacturing Company, Quincy, Illinois; Herd Reproduction Services Inc., Athens, Georgia; and NOBA Inc., Tiffin, Ohio.
Preface to the first revised edition (1992)

The editors, faculty of the Dairy Science Department, and other University of Florida authors and contributors wish to dedicate this book to the Florida Dairy Farmers whose cooperative interaction with the University of Florida programs and visionary investment through their Dairy Checkoff Programs in research and education at the University of Florida have helped faculty focus their programs on large dairy herd management. Through their marketing cooperatives, Florida dairy farmers established the Dairy Checkoff, a contribution to the University of Florida Foundation of $.01/cwt of milk sold from the farm, which is held in escrow in a University of Florida Foundation account until a dairy farmer grant review committee reviews research and education proposals and directs the funds to approved grant requests. Contributions to the Dairy Checkoff began in 1988 and have amounted to approximately $250,000 per year. These funds in partnership with base support given to faculty in dairy science, veterinary medicine, economics, agronomy, soil science, agricultural engineering, and other fields have given dairy farmers an added voice in priority setting for research programs and have given many faculty the opportunity to supplement funding of research at times when tax-related funding was decreasing. We thank them for that support and for their input into priority setting for research which the process has contributed.

This book resulted from a symposium February 19 to 21, 1992 in Gainesville, FL, which was designed to produce the book. A previous and similar venture in 1976 produced a book which has been helpful to dairy management professionals for many years. Heartfelt thanks go to the authors of the 85 chapters who accepted invitations to participate in the symposium and contribute their chapters to a book which we think is somewhat unique in its application of science and management to dairy farming.

Our thanks also go to the Management Services arm of the American Dairy Science Association who have handled printing and distribution of the book.

In many chapters of this book, it was helpful to coverage of the topics to use some references to commercial products in addition to generic compounds and products. Mention of a trade name, proprietary product, or special equipment or warranty by any of the authors does not imply its approval to the exclusion of other products that may be suitable.
Preface to the third edition (2017)

Overview

In 1976, the faculty of the Dairy Science Department at the University of Florida (UF) organized the first Large Dairy Herd Management (LDHM) symposium in Gainesville. It addressed the increasing complexity of management of many of the state’s dairies as they grew. Florida had a long history of having a greater proportion of large herds than most US states, characterized by management of large groups of cows confined in open lots or in shade structures for heat stress abatement and fed totally mixed rations of harvested and stored forages and commodities. For large herds, increasing specialization, capturing some efficiencies of scale, managing more people and capital, and selecting effective new technologies became as important as managing the cows. The symposium and resulting book (Large Dairy Herd Management, 1st ed., 1978) were aimed at managing large herds, defined at the time as those with more than 200 milking cows. More than 70 authors contributed 85 chapters in 9 sections to provide, in one volume, the best possible information applicable specifically to large herds.

Fourteen years later, the UF dairy faculty launched the second symposium designed to capture the latest information and produce the second edition (Large Dairy Herd Management, 1st rev. ed., 1992), with more than 100 authors contributing 85 chapters in 9 book sections. The content was extensively updated because of the increasing importance of large herds well beyond Florida. The second edition also benefited greatly from new knowledge and practices resulting from the Florida Dairy Checkoff program that provided base support for many research and education projects of UF faculty, guided in partnership and collaboration with Florida dairy farmers during the 1980s and beyond. Professors Jack Van Horn and Charlie Wilcox edited the first two editions of Large Dairy Herd Management, and the American Dairy Science Association (ADSA) published and marketed the second edition.

A key mission of the ADSA Foundation is education. Now, nearly 40 years since the first edition, the Foundation identified the need for a major update and launched the formidable project to produce the third edition, beginning with an international conference in May 2016 as the tried-and-true approach to catalyze development and collection of the content, this time with production of this electronic book (e-book) format. The far-reaching changes and innovation in practices and technologies that have developed for and in large dairy herd management in the last 40 years are prodigious. This volume captures much of this change and represents the 2-year efforts of 171 authors, coordinated and cajoled by 18 section editors to present the most pertinent content in 15 topic sections totaling 97 chapters. Additionally, 73 external reviewers and many internal reviewers (from the author corps) reviewed and advised on chapters of others within their section or in other sections of the e-book.

Purpose

The Foundation’s primary motivation for developing and publishing this third edition was to gather in one place the most up-to-date, comprehensive, science-based collection of management information for large dairy herds. Because today’s dairy markets are truly global for producers in developed countries, this volume has a global scope, especially as it relates to on-farm practices that are or will be essential for participation in world markets. These requirements continue to be driven by social, consumer, and market demands. This new edition has broadened scope, with sections addressing dairy sustainability, especially as it relates to environmental challenges; characterization of some social and economic challenges and opportunities for dairying in a more global context; a deliberate emphasis to embrace a systems-based approach to management in many chapters; comprehensive coverage of the differences and nuances of herd management in different types of large herd systems—grazing, organic, automatic milking, as well as confined housing; direct emphasis on animal and herd welfare as an essential management feature and a future requisite for participation in global trade; and finally, a section on the rapidly developing area of precision management technologies.

Target audience

This edition is intended to be an international reference and textbook on dairy production and management. It provides cutting-edge information for 3 critical categories of people: progressive dairy farmers developing, expanding, or improving man-
agement of large herds; professional dairy advisors (consultants)—typically individuals with significant background and expertise in one or more areas who seek more knowledge and expertise in related areas of dairy management; and finally, and perhaps most importantly, upper-level university students, for whom the textbook can serve as a resource across multiple courses, topics, and disciplines of dairy management and science. The Foundation has committed to helping the next generation by setting a relatively nominal student price for this third edition.

Level of content

Authors and editors were selected because they are experts in their chosen fields. In writing, they were urged to use the same level of scientific rigor in collation and interpretation of the body of knowledge as would be expected in the *Journal of Dairy Science*. However, it was not intended that they write in strict scientific format and language. They were asked to develop their sections and chapters on the premise that readers would accept their contributions as accurate, unless otherwise noted as speculation.

Some may wonder how many cows are in a large herd. Since the first edition was published in 1978, this number (200 milking cows) has grown significantly, and the proportion of total milk produced by larger herds in developed countries has increased dramatically over the last 4 decades. Whereas some of the ideas, practices, and technologies presented in the third edition were developed for specific application in large herds, much of the knowledge and ideas presented in this publication can be applied across herd sizes or, at minimum, serve as catalysts for thought about potential application and adaptation for implementation in many herds, irrespective of size.

The future

Even though the continuing trend in developing countries and even in some transitioning countries is more large herds, the amount of milk production by these herds still represents a small proportion of the world’s total milk production. As reported in this edition, the average dairy farm in the world has about 3 cows. And, although global trade opportunities are very much on the minds of dairy producers in developed countries, only about 2.6% of global milk production is traded; this is projected to almost double by 2050. Even though this represents a relatively small proportion of total global production, this is still a lot of milk that offers an opportunity for additional growth if large herd systems can be developed and fostered to accomplish increased production in socially, economically, and environmentally sustainable ways.

At the same time, the vast majority of milk worldwide is produced and consumed locally. There is enormous need and potential for human nutrition benefits in developing countries to consume more milk protein and energy. For this to occur, major transformations in purchasing power (less poverty and greater disposable income) must occur and more effective preservation, storage, and distribution systems for dairy products must be developed. New herd management practices and technologies must be adopted locally. Continued development in large herd production systems will serve to present a menu of potential options and opportunities for dairy farms of any size, including those where the majority of the world’s milk is and will be produced and consumed—locally.

Implementing the new electronic format for the third edition of *Large Dairy Herd Management* will make updating and adding new content easier in the future. What might be added in the future? In a professional career spanning over 40 years, and particularly in the last 2 years working on this project, it has been fascinating to imagine the global dairy industry of the future (e.g., in the year 2050) when the fourth edition of this publication is developed.

Thinking in systems and recognizing and carefully integrating practices and technologies with other components of complex systems will be paramount to the success of dairying in different countries and to participation in global dairy trade. In my view, future dairy production systems (large herds and smaller) will be soil-centric and fully integrated into larger whole agro-ecosystems. In response to increasing societal demands, large herd producers will need to engage in extensive and deliberate public discourse to develop, ensure, and improve market opportunities and secure the public’s trust about production management practices, their consequences, and their acceptability.

The word “sustainability” has sometimes been vilified as a concept standing in the way of industrial progress and profit. More recently, the word and the working concept are gaining acceptance. Sustainability in dairying is defined by the continuous process
towards effective integration of social, environmental, and economic values with dairy management practices and outcomes that bring valued contributions to humankind, while simultaneously regenerating the resource base and the environment. It is obvious that achieving sustainability will be essential for future successful dairy systems, large and small. If future dairy systems and their management are not socially acceptable and environmentally regenerative, they will not be economically profitable nor sustainable.

The obvious trend in some economically developed countries will be for large dairy herds to produce an even greater proportion of that country’s milk solids and to capture economies of scale through adoption of new technologies and better management. However, large herds in developed countries are projected to produce less than 6% of needed milk solids for global trade by 2050. Management of large herd systems (whether based on grazing or mechanically harvested forages) will likely try to deploy “sustainable intensification” with increased production and efficiency per unit of land base, without far-reaching irreversible use of resources and deleterious environmental consequences. The concepts encompassing sustainable intensification as related to future policy direction are currently being vigorously debated in the academic research literature. Some use the “sustainable intensification” mantra to justify irreversible utilization of additional global resources, even if with some environmental damage, to justify feeding the growing world population, which is expected to reach 9 billion people by 2050. This is wrong. The more likely reality is that much more attention must and will be paid to environmental, social, and economic sustainability through regenerative land management practices rather than increasing productivity. This will be a shared transformational process among dairy sectors and societies through deliberative engagement processes.

Even with the tremendous technological advances to improve cow productivity and efficiency in the last 100 years in developed countries, most dairy systems are not especially regenerative. This must be reversed. In the future, principles and practices associated with regenerative agriculture will dominate in both large and smaller dairy herds in developed and emerging countries. As an example, recent research in other agro-ecosystems with cattle as an integral component of the production system shows that net greenhouse gas emissions can be 2- to 4-fold less with conservation grazing (e.g., adaptive multi-paddock grazing) and cropping practices such as no- or minimum-tillage, multi-culture cropping systems versus monocultures, and strategic crop rotations compared with simply removing one-half of the cattle from the system. This occurred by dramatically increasing soil organic matter content and water-holding capacity within the system. Soil organic matter regeneration will be valued in future markets as a primary agro-ecosystem service, a required social environmental responsibility and practice, and a business and environmental opportunity for dairy production systems.

As emerging countries develop dairy systems conducive to local conditions to supply the projected vast local supply of needed milk solids, it is hoped that smaller dairy herds will practice similar sustainable intensification and regenerative management to maintain viability. It will be for the “good of the commons” that the resource base and outputs will be in proximity to optimize soil organic matter regeneration and water and nutrient recycling. Future dairy production has tremendous potential opportunities to innovate and be proactive in development of systems that are regenerative and sustainable parts of whole agro-ecosystems, producing milk solids and ecosystem services.

In some chapters of the third edition, it was helpful to use specific names of commercial products, services, or equipment for clarity. Mention of trade names, proprietary products, or special equipment or warranty by any of the authors does not imply endorsement or approval to the exclusion of other products or services that may be just as effective.

Finally, a complete acknowledgments section is provided on the next page. But as a special personal note here, this project would not have been completed without the immense expertise and assiduous drive of technical editor Louise Adam and her skilled editorial and production team at FASS in all facets of the endeavor. Thank you very much!

David K. Beede
Michigan State University
June 2017
Acknowledgments

The ADSA Foundation expresses its sincere gratitude to the many people who helped plan and produce the third edition of the *Large Dairy Herd Management* e-book and associated conference. We are grateful to editor-in-chief David K. Beede, his team of section editors (page xv), chapter authors/ internal reviewers (page xvii), and external reviewers (page xviii) for their work to organize and write this outstanding resource for the global dairy industry. This book would not have been possible without their diligence and perseverance. Also, gratitude is expressed to the editors and authors of the first and second editions of *Large Dairy Herd Management*, as their foresight helped establish the foundation for this third edition. Second, we thank Dr. David Beede, Dr. Larry Miller, Molly Kelley, and the FASS staff for their work in organizing the conference and producing the e-book. Countless hours were spent by members of the organizing committee, selecting chapter authors and section editors, reviewing and editing content, organizing the conference, and finding sponsors for the e-book and conference. We also thank the conference attendees for providing invaluable feedback that helped shape the final version of the e-book. The ADSA Foundation would also like to express its sincere gratitude to the sponsors of the e-book and conference (page xx)—without their support, this e-book and conference would not have been possible. Finally, the ADSA Foundation thanks the dairy farmers and those in allied roles globally for their continued labor and diligence to produce milk and dairy products for consumers worldwide.

Michael Socha
ADSA Foundation Chair
June 2017
Editors

Editor-in-Chief
David K. Beede
Department of Animal Science
Michigan State University
East Lansing, MI 48824

Section 1: Building Sustainability and Capacity
David K. Beede
Department of Animal Science
Michigan State University
East Lansing, MI 48824

Section 2: Large Herd Systems
Steven P. Washburn
Department of Animal Science
College of Agriculture and Life Sciences
North Carolina State University
Raleigh, NC 27695

Section 3: Facilities and Environment
Joseph M. Zulovich
Division of Food Systems and Bioengineering
University of Missouri
Columbia, MO 65211

Joseph P. Harner
Biological and Agricultural Engineering
Kansas State University
Manhattan, KS 66506

Section 4: Milk Markets and Marketing
Normand R. St-Pierre
Department of Animal Sciences
The Ohio State University
Columbus, OH 43210

Section 5: Genetic Selection
Programs and Breeding Strategies
Kent A. Weigel
Department of Dairy Science
University of Wisconsin
Madison, WI 53706

Section 6: Calves and Replacements
Robert E. James
Department of Dairy Science
Virginia Tech University
Blacksburg, VA 24061

Section 7: Reproduction and Reproductive Management
William W. Thatcher
Department of Animal Sciences
University of Florida
Gainesville, FL 32611

Section 8: Nutrition and Nutritional Management
Richard J. Grant
William H. Miner Agricultural Research Institute
Chazy, NY 12921

Heather M. Dann
William H. Miner Agricultural Research Institute
Chazy, NY 12921

Section 9: Lactation and Milking Systems
Rupert M. Bruckmaier
Veterinary Physiology
Vetsuisse Faculty
University of Bern
3012 Bern, Switzerland

Section 10: Mastitis and Milk Quality
Joseph S. Hogan
Ohio Agricultural Research and Development Center
The Ohio State University
Wooster, OH 44691
Section 11: Animal and Herd Welfare
Trevor J. DeVries
Department of Animal Biosciences
University of Guelph
Guelph, ON, Canada N1G 2W1

Section 12: Herd Health
Carlos A. Risco
Department of Large Animal Clinical Sciences
College of Veterinary Medicine
University of Florida
Gainesville, FL 32610

Section 13: Business, Economic Analysis, and Decision-Making
Albert De Vries
Department of Animal Sciences
University of Florida
Gainesville, FL 32611

Section 14: Effectively Managing Farm Employees
Stanley J. Moore
Michigan State University Extension
East Lansing, MI 48824

Phillip T. Durst
Michigan State University Extension
East Lansing, MI 48824

Section 15: Precision Management Technologies
Jeffrey M. Bewley
Department of Animal and Food Sciences
University of Kentucky
Lexington, KY 40546
Authors

Abbreviations

The following abbreviations may be used without definition in the book.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>amino acid</td>
</tr>
<tr>
<td>ACTH</td>
<td>adrenocorticotropic</td>
</tr>
<tr>
<td>ADF</td>
<td>acid detergent fiber</td>
</tr>
<tr>
<td>ADG</td>
<td>average daily gain</td>
</tr>
<tr>
<td>ADL</td>
<td>acid detergent lignin</td>
</tr>
<tr>
<td>ADIN</td>
<td>acid detergent insoluble nitrogen</td>
</tr>
<tr>
<td>AI</td>
<td>artificial insemination</td>
</tr>
<tr>
<td>BCS</td>
<td>body condition score</td>
</tr>
<tr>
<td>BHB</td>
<td>β-hydroxybutyrate</td>
</tr>
<tr>
<td>BLUP</td>
<td>best linear unbiased predictor</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>lST</td>
<td>bovine somatotropin</td>
</tr>
<tr>
<td>BTA</td>
<td>Bos taurus autosome</td>
</tr>
<tr>
<td>BUN</td>
<td>blood urea nitrogen</td>
</tr>
<tr>
<td>BW</td>
<td>body weight</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CLA</td>
<td>conjugated linoleic acid</td>
</tr>
<tr>
<td>CN</td>
<td>casein</td>
</tr>
<tr>
<td>CNS</td>
<td>coagulase-negative staphylococci</td>
</tr>
<tr>
<td>CoA</td>
<td>coenzyme A</td>
</tr>
<tr>
<td>CP</td>
<td>crude protein</td>
</tr>
<tr>
<td>CV</td>
<td>coefficient(s) of variation</td>
</tr>
<tr>
<td>DCAD</td>
<td>dietary cation-anion difference</td>
</tr>
<tr>
<td>DHI(A)</td>
<td>Dairy Herd Improvement (Association)</td>
</tr>
<tr>
<td>DIM</td>
<td>days in milk</td>
</tr>
<tr>
<td>DM</td>
<td>dry matter</td>
</tr>
<tr>
<td>DMI</td>
<td>dry matter intake</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>EAA</td>
<td>essential amino acid</td>
</tr>
<tr>
<td>EBV</td>
<td>estimated breeding value</td>
</tr>
<tr>
<td>ECM</td>
<td>energy-corrected milk</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>ETA</td>
<td>estimated transmitting ability</td>
</tr>
<tr>
<td>FAME</td>
<td>fatty acid methyl esters</td>
</tr>
<tr>
<td>FCM</td>
<td>fat-corrected milk</td>
</tr>
<tr>
<td>FSH</td>
<td>follicle-stimulating hormone</td>
</tr>
<tr>
<td>GnRH</td>
<td>gonadotropin-releasing hormone</td>
</tr>
<tr>
<td>h²</td>
<td>heritability</td>
</tr>
<tr>
<td>HTST</td>
<td>high temperature, short time</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon</td>
</tr>
<tr>
<td>Ig</td>
<td>immunoglobulin</td>
</tr>
<tr>
<td>IGF</td>
<td>insulin-like growth factor</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>IMI</td>
<td>intramammary infection</td>
</tr>
<tr>
<td>LA</td>
<td>α-lactalbumin</td>
</tr>
<tr>
<td>LG</td>
<td>β-lactoglobulin</td>
</tr>
<tr>
<td>LH</td>
<td>luteinizing hormone</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>LSD</td>
<td>least significant difference</td>
</tr>
<tr>
<td>LSM</td>
<td>least squares means</td>
</tr>
<tr>
<td>mAb</td>
<td>monoclonal antibody</td>
</tr>
<tr>
<td>ME</td>
<td>metabolizable energy</td>
</tr>
<tr>
<td>MIC</td>
<td>minimum inhibitory concentration</td>
</tr>
<tr>
<td>MP</td>
<td>metabolizable protein</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>MUFA</td>
<td>monounsaturated fatty acids</td>
</tr>
<tr>
<td>MUN</td>
<td>milk urea nitrogen</td>
</tr>
<tr>
<td>NAN</td>
<td>nonammonia nitrogen</td>
</tr>
<tr>
<td>NDF</td>
<td>neutral detergent fiber</td>
</tr>
<tr>
<td>NDIN</td>
<td>neutral detergent insoluble N</td>
</tr>
<tr>
<td>NEAA</td>
<td>nonessential amino acid</td>
</tr>
<tr>
<td>NEg</td>
<td>net energy for gain</td>
</tr>
<tr>
<td>NEl</td>
<td>net energy for lactation</td>
</tr>
<tr>
<td>NEm</td>
<td>net energy for maintenance</td>
</tr>
<tr>
<td>NFC</td>
<td>nonfiber carbohydrates</td>
</tr>
<tr>
<td>NPN</td>
<td>nonprotein nitrogen</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>NSC</td>
<td>nonstructural carbohydrates</td>
</tr>
<tr>
<td>OM</td>
<td>organic matter</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PGF2α</td>
<td>prostaglandin F2α</td>
</tr>
<tr>
<td>PMNL</td>
<td>polymorphonuclear leukocyte</td>
</tr>
<tr>
<td>PTA</td>
<td>predicted transmitting ability</td>
</tr>
<tr>
<td>PUFA</td>
<td>polyunsaturated fatty acids</td>
</tr>
<tr>
<td>QTL</td>
<td>quantitative trait loci</td>
</tr>
<tr>
<td>r</td>
<td>correlation coefficient</td>
</tr>
<tr>
<td>R²</td>
<td>coefficient of determination</td>
</tr>
<tr>
<td>RDP</td>
<td>rumen-degradable protein</td>
</tr>
<tr>
<td>REML</td>
<td>restricted maximum likelihood</td>
</tr>
<tr>
<td>RIA</td>
<td>radioimmunoassay</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RUP</td>
<td>rumen-undegradable protein</td>
</tr>
<tr>
<td>SARA</td>
<td>subacute ruminal acidosis</td>
</tr>
<tr>
<td>SCC</td>
<td>somatic cell count</td>
</tr>
<tr>
<td>SCS</td>
<td>somatic cell score</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>SFA</td>
<td>saturated fatty acids</td>
</tr>
<tr>
<td>SNP</td>
<td>single nucleotide polymorphism</td>
</tr>
<tr>
<td>SPC</td>
<td>standard plate count</td>
</tr>
<tr>
<td>TDN</td>
<td>total digestible nutrients</td>
</tr>
<tr>
<td>TMR</td>
<td>total mixed ration</td>
</tr>
<tr>
<td>TS</td>
<td>total solids</td>
</tr>
<tr>
<td>UF</td>
<td>ultrafiltration, ultrafiltered</td>
</tr>
<tr>
<td>UFA</td>
<td>unsaturated fatty acids</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>VFA</td>
<td>volatile fatty acids</td>
</tr>
</tbody>
</table>
Sponsorship

The ADSA® Foundation gratefully acknowledges the generous sponsorship of *Large Dairy Herd Management*, third edition, by the following companies.

Exclusive Sponsors

Section 5: Genetic Selection Programs and Breeding Strategies

![Zoetis Logo]

FOR ANIMALS. FOR HEALTH. FOR YOU.

Section 8: Nutrition and Nutritional Management

![Purina Logo]

Section 12: Herd Health

![Zoetis Logo]

FOR ANIMALS. FOR HEALTH. FOR YOU.
Sponsors

Section 2: Large Herd Systems

Section 6: Calves and Replacements

Section 7: Reproduction and Reproductive Management

Section 11: Animal and Herd Welfare

Section 14: Effectively Managing Farm Employees

Section 15: Precision Management Technologies
Section 1: Building Sustainability and Capacity

David K. Beede

This first section of Large Dairy Herd Management portrays current and future trends in supply and demand for milk production and addresses key challenges for providing milk protein where it is needed most. Major challenges to environmental sustainability are introduced and expanded upon in following chapters. Finally, progress to improve feed efficiency past and future will be presented.

Chapter 1-01 (Dairy sector across the world: National trends and opportunities for sustainable growth) sets the stage, considering historical, current, and future global, regional, and national trends for supply and consumption of milk and dairy products by humans. The chapter also relates prospects for international trade and concludes with a discussion on the sustainable growth of the global dairy sector. In 2013, about 2.6% of total global milk production was traded among developing, transition, and developed countries. This relative proportion is only predicted to double by 2050. Average global dairy herd size currently is just under 2.9 cows/farm (see Chapter 4-20: Changing global dairy markets: comparisons of dairy systems and economies). The vast majority of milk produced will be consumed locally. Most milk for international trade will be from developed countries where large dairy herds predominate. There is an enormous need for milk protein to meet human nutrition requirements in developing and transition countries. However, to supply more milk protein where it is needed, a major transformation in purchasing power (with less poverty and greater disposable income) and more effective preservation, storage, and distribution systems for dairy products are needed.

Chapters 1-02, 1-03, and 1-04 address the effects of dairy farming on air and water quality, environmental impacts, and opportunities to improve short-term and longer-term sustainability. Chapter 1-02 (Assessing carbon footprints of dairy production systems) addresses the modeling of and finding and using cost-effective options to reduce a dairy farm’s carbon footprint. This is and will continue to be a critical management and ownership objective to enhance future sustainability and profitability of dairying. The farm-gate carbon footprint of milk, the term used in this chapter, is calculated from total net greenhouse gases (GHG) emitted by operation of the dairy farm. Major GHG include methane from ruminal fermentation (as much as 60% of the total footprint), reactive nitrogen (nitrous oxide and ammonia up to 28% of the total), and GHG generated during farming operations (e.g., fuel and fertilizer use, and production of purchased feeds; up to 25% of total carbon footprint). These GHG contribute to global warming. Management strategies to reduce GHG include feeding less forage, reducing herd replacement rate, increasing milk production per cow, and optimizing protein feeding. Reduced reactive nitrogen from manure by covered or enclosed manure storage, and on-farm anaerobic digesters to capture gas for electricity production are examples. More and more farms will adopt methods already available and new strategies will be developed and adapted as favorable policy and economic conditions evolve. This chapter also itemizes the carbon footprints of different dairy farm types, and explores the potential to reduce the footprint of milk in cost-effective ways to enhance sustainability and the economic and social capacity of dairy systems. Potential reductions of 20 to 30% in GHG emissions are possible.

Dairy cattle produce protein (milk and meat) and other essential nutrients, gases, and manure (feces and urine) containing nutrients and other chemicals. Chapter 1-03 (Water quality concerns associated with dairy farms) addresses, briefly, the benefit and mainly the issues with nutrients in manure that are associated with the water matrix in the farm system and surrounding environment. In the optimal scenario, manure serves a rich fertilizer source of carbon, phosphorus, and nitrogen for cropland. However, with intensification of dairy farms (and other livestock farms), risks of imbalance of nutrient import from feed and fertilizer compared with export as milk, animals, and manure can overwhelm crop uptake capacity. Pollutants in the water matrix affect water and soil quality. Chapter 1-03 addresses these issues, as well as nutrient management planning, best management practices, regulatory approaches, and their effectiveness to improve water quality. Mitigation strategies for both source and transport of manure are needed and discussed to prevent pollution of soil and water. The chapter concludes by addressing emerging concerns about some other chemicals and agents associated with dairy farming. Antibiotics, antibiotic-resistant bacteria, hormones, and endocrine disruptors can exist in the water matrix as pollutants. Evidence is emerging that they are significant risk factors with
unintended consequences in the environment. Much more research is needed to understand their dynamics and effective approaches to reduce loading of the water matrix from dairy farms.

Typically, if “air quality” is mentioned, dairy farmers might think of carbon footprint or GHG. However, Chapter 1-04 (Impacts and mitigation of emissions from dairy feeds on air quality) describes work in California from the last decade in which additional air pollutants were discovered to be of major concern. Silage is an especially energy-dense feed effectively and economically used in many dairy systems. However, volatile organic compounds (VOCs; volatile fatty acids, alcohols, and aldehydes), and oxides of nitrogen (NOx) from silages represent major dry matter losses occurring during ensiling, removal from storage, ration mixing, feed-out, and in feed lanes. These emission losses are primarily direct economic losses to the dairy farm. They also contribute to environmental pollution and global ozone challenges and to human health concerns. Most progress to date has been to characterize the quantities of VOCs and NOx emitted from some dairies and to predict their occurrence through modeling. Current mitigation efforts should focus on reducing losses especially from feed lying in feed lanes or bunks. Strategies beyond feed management must be developed; attempts thus far are described. Reducing losses through careful management of fermented feeds is crucial to the environmental and financial viability of dairies in California and likely in other areas in the future.

The final chapter in this section, Chapter 1-05 (Feeding and breeding to improve feed efficiency and sustainability) focuses on feeding and breeding strategies to improve conversion of feed to milk and consequently dairy sector sustainability. In the United States and other developed countries, major improvements in feed efficiency have occurred in the last century. This resulted primarily from genetic selection for increased milk yield per cow, and from greatly improved nutrition and management practices. This chapter characterizes how and why this occurred: the dilution of maintenance and improvements in diet composition, digestion, and animal metabolism. Current genetic potential for milk production of most cows in developed countries challenges dairy farmers’ ability to feed and manage them optimally. Implementing nutritional management grouping to more efficiently manage the biology of the cow through lactation can be implemented now to improve herd feed efficiency. Additionally, genomic tools allow the selection of cows that have even greater feed efficiency. Improving feed efficiency for milk production by effectively using current and applying new selection and management technologies appears to be a responsible approach for greater environmental sustainability, at least for the foreseeable future.
Section 2: Large Herd Systems of the World

Steven P. Washburn

The chapters in this section provide an overview of a range of systems of dairy production and management, the emergence and application of robotic milking systems, and dairy beef production. These chapters establish a framework around which chapters in other sections provide more detail about specific topics that have relevance to one or more of the systems described herein.

Chapter 2-06 (Large dairy herd design and systems in temperate and cold climates) defines 4 types of dairy farms: small farms in the last generation; niche dairies featuring products for specialized markets; lifestyle dairies with at least one other source of income; and large dairies producing at least a tanker load of milk in 1 to 2 d. The latter category already accounts for more than two-thirds of the total US milk supply, and larger dairy systems are expected to continue increasing market share and remain as the dominant production system. Although the chapter focuses on dairy systems in temperate and cold climates, it highlights the need for cattle to be housed in facilities designed to minimize effects of high summer temperatures, which affect milk production to a greater extent than colder temperatures. The need for innovative facility designs to meet concurrent goals of optimizing cow performance and cow comfort while ensuring efficiency of labor use is emphasized as a means of long-term profitability. A dairy herd management plan is described for an example herd with 3,500 milk cows milked 3 times per day in a rotary parlor with approximately 17 full-time employees. Understanding 24-h and annual “circles” or cycles on a dairy and monitoring the 2-year cycle from birth until a heifer calves can help managers identify weak areas and possible bottlenecks that limit a farm’s potential.

Chapter 2-06 and Chapter 2-07 (Large confined dairy herd systems in hot climates) both deal with large confinement dairy herd systems that are based on use of total mixed rations (TMR) for feeding within a variety of housing systems that account for differences in climate. The approaches taken in these 2 chapters differ in that Chapter 2-07 necessarily includes a focus on ensuring access to adequate water supplies and strategies to keep cows comfortable in hot environments. Brief descriptions of a variety of housing options used in hot climates are included. Dairy production has been growing in non-traditional dairy regions. To that end, Chapter 2-07 describes pertinent criteria related to site selection, notes the importance of effective training programs for employees not having dairy experience, and points out issues associated with policies in various countries that can affect production of feedstuffs, access to water, and availability of markets. The authors note that challenges often faced for new herds that are funded by investors include unrealistic expectations of herd performance in the first few years.

Chapter 2-08 (Seasonal pasture-based dairy production systems) focuses on pasture-based dairy production, with an emphasis on seasonal breeding and calving and matching forage pasture growth to the biological demand of dairy cows across the lactation cycle. Effective use of pasture as the primary and most economical feed source is emphasized as a key to success for pasture-based systems, along with minimizing investments in depreciable assets. Infrastructure requirements include a farm layout using multiple paddocks with fencing to control grazing, travel lanes for access by cattle and machinery, readily available water sources, use of shade or cooling in some environments, and possible use of irrigation. The chapter includes discussion of stocking rate considerations as well as genetic characteristics of cows that would be expected to perform well in seasonal-calving grazing systems. Many types of forage species that can be used for pasture in dairy grazing systems are noted and a more detailed description of optimal grazing management of cool-season grass species is provided. Various hybrid systems of production that use combinations of supplemental feeding or partial TMR along with use of grazing at low to moderate levels of dry matter intake from pasture are acknowledged but not covered in detail. Such hybrid systems are potentially viable under favorable economic circumstances.

Chapter 02-09 (Organic dairy production systems) also describes a pasture-based system because of the requirement that organically managed dairy cattle have access to pasture for a significant portion of their rations. For larger organic dairy herds, meeting the required pasture requirements can be a challenge. Organic milk production has a relatively small market share but has been one of the fastest growing segments of agricultural production in the United States and is of economic importance in other areas of the world. Much organic
dairy production would fit under the category of niche
dairies for specialty markets, as noted in Chapter 2-06.
Emphasis in Chapter 2-09 is on US organic dairy pro-
duction but has relevance to other countries as well.
This chapter reviews general requirements for becom-
ing certified for organic dairy production as outlined
and regulated through the National Organic Program
within the United States Department of Agriculture.
Organic dairy farms typically emphasize soil fertility as
the basis for good forage production and as a founda-
tion for success. Because of limitations on the use of
antibiotics and hormonal interventions for reproductive
management, emphasis in organic production is on use
of preventive measures and management practices to
ensure good herd health. Case studies from 2 large or-
ganic dairy herds that illustrate some details of organic
management practices are included in this chapter.

Chapter 2-10 [Dairy systems with automatic milking
(robots)] deals primarily with a relatively new technol-
ogy that is in early stages of growth. About 15,000
commercial dairies are using automatic milking sys-
tems around the world. Many of the farms to first use
the technology were family farms for which potential
lifestyle advantages were considerations for adoption.
Herds of more than 500 cows that use automatic milking
systems are not yet numerous but are expected to be-
come more common. The technology is expanding from
single box systems that typically milk 55 to 65 cows
per individual robot to more complex systems. Systems
with up to 5 tandem boxes and rotary parlor adapta-
tions are emerging for both interior and external rotary
parlor designs. This chapter describes some of the cost
considerations and tradeoffs for managing automatic
milking systems. With more use and experience with
automatic milking systems, improved efficiencies will
likely be realized through a combination of improved
technology and better understanding of the implica-
tions of various management practices. For large herds
to embrace automatic milking systems, a reduction in
labor and improved cow comfort with fewer stressful
group trips to the holding area and parlor need to be
realized.

Chapter 2-11 (Beef production from the dairy herd)
covers an important aspect of any dairy production sys-
tem through the sale of cows as well as the many male
calves that are born on most dairy farms. Use of sexed
semen increases potential replacement heifer popula-
tions and potentially allows for dairy cows of lower
 genetic merit to be bred to sires of various beef breeds.
This chapter is focused on concepts and challenges that
apply to management of dairy beef production systems.
For dairy beef production to be successful, neonatal
calves need to receive care, including adequate and
timely intake of colostrum, similar to that of their herd-
mates destined to become lactating cows. Although 2
options for veal production are mentioned, the empha-
sis is on dairy or crossbred calves from weaning through
harvest at various ages and weights depending on the
type of feeding system and the intended market. This
chapter includes some historical perspective of dairy
beef production and provides an overview of feeding
requirements as well as use of anabolic growth stimu-
lants. A description of carcass characteristics, pricing
structure and marketing strategies including specialty
or niche markets are featured in the chapter. As with
any business venture, risk management is a critical
consideration.
Dairy facilities include the feed center, housing area, milking center, and processing and storage of manure nutrients. Good design of dairy facilities involves a team of individuals with expertise in finance, labor management, nutrition, animal health and welfare, regulations, and engineering. These individuals integrate thoughts and ideas on developing the best possible dairy for the location. One of the most important conversations when considering new or expanding dairy facilities revolves around the availability of local resources and the impact of the dairy on the local community. These discussions focus on the cropland available and the ability to appropriately deal with the manure nutrients, an adequate water supply without affecting the water supply of others in the region, ability to obtain necessary stable electrical power, effect of increased local traffic on the community, and available milk marketing outlets. Because of constraints including site boundaries, natural resources, finances, management style, feed types, the outcome of dairy facility design is often not the “ideal” dairy but rather a “compromise” dairy. The welfare of the animals, safety of employees, or protection of natural resources should never be compromised in the design process.

Dairy facility design ultimately has to move from a “conceptual” phase to a “challenge” phase to a “construction” phase if animals (cows or heifers) are raised on site. The conceptual phase explores the different types of parlors, housing types, manure handling options, and feed center layouts. In this phase, questions are answered through conversations with experts, visits to recently constructed dairies, and existing management experiences. The length of this phase depends on previous experience with managing and operating a dairy. It is critically important to document (in writing, pictures, and videos) these discussions of likely more than 10,000 decisions that go into designing a dairy.

Next is the challenge phase. During this period, the dairy design focuses on the “system” in which the 10,000 decisions are made and must work together. Often, a change in one area affects another area. A team approach ensures that all decisions and changes made during this process are viewed from different vantage points so as to not overlook a major negative impact. Additionally, changes in the basic design may result having to start over to make sure the entire dairy system functions as unit. In some cases, the “perfect” dairy may be designed based on the best scientific data available, only to reach the end of the challenge phase and have to start over due to cost constraints. The challenge phase ends with a signed contract for project construction. It is important to remember that although this might be a long process, it is still easier to make changes on paper than after construction of facility that will likely have a life of 20 to 40 years.

The construction phase begins when all questions have been answered and a contractor has the drawings and specification details needed to begin constructing the dairy. Some minor changes might still be made but once the contractor is on site and construction has begun, major changes are not possible without redesign and increases in cost.

The chapters in this section are focused on the conceptual phase of dairy design. The information provided addresses core decision areas in the feed center, housing area, milking center, and processing and storage of manure nutrients.

A systems approach to each of the individual systems results in an integrated, efficient, and functional dairy design. A farmstead designed with a systems approach enhances the opportunity to take advantage of excellent dairy herd management and supports a profitable dairy business. Chapter 3-12 (A systems approach to dairy farmstead design) introduces such a system approach to farmstead design.

Chapter 3-13 (Systems approach to designing milking centers and other dairy systems) focuses on designing for specific herd and housing group sizes, parlor size, and design of the milking center, often the focal point of the dairy operation.

Chapter 3-14 (Whole-farm nutrient balance: Systems approach to dairy nutrient planning) details how the sustainability and environmental footprint of a dairy operation should include an assessment of the whole dairy system using nutrient tools such as whole-farm nutrient balance. A comprehensive systems approach for nutrient planning on dairies reduces environmental risks associated with dairy and increase nitrogen (N) and phosphorus (P) use efficiency.

A basic understanding of the capabilities and limitations of various manure management technologies will generate realistic expectations, investments that bet-
ter address the needs of the farm and more successful systems. Chapter 3-15 (Manure handling, treatment, and storage systems) reviews the basic technologies and principles of manure handling from barn to storage.

The transition cow facility developed by the dairy team should allow the cow to express her genetic potential and be designed with flexibility to accommodate changing recommendations. Properly designed transition cow facilities should consider cow comfort, cow behavior, worker safety, and labor efficiency for managing and caring for these cow groups. Chapter 3-16 (Transition cow barn design and management) reviews the principles of transition cow housing.

Chapter 3-17 (Mature cow housing systems) discusses the basic housing requirements of a modern dairy herd. The focus is on the theory behind the design of a confinement dairy housing system with natural ventilation to be used in climates comparable to the northeastern and Upper Midwest regions of the United States. Many of the recommendations presented for hot weather design are currently used for freestall barns located in hot and humid climates of the southeastern United States.

Well-designed facilities for dairy calves and heifers are key elements to ensuring healthy, well-grown heifers ready to enter the milking herd by 24 mo of age. Along with a productive environment, facility choices need to reflect the farm’s management plan, consider the changing needs of growing calves and heifers, provide safe working conditions for the caregivers, protect the environment, and be cost effective. Chapter 3-18 (Replacement heifer facilities) reviews facility design for the replacement heifer herd.

Feed center design is typically based on a feed management plan developed by a dairy management team. The feed center design is based on efficient mass flow, in which harvested crops and off-farm feedstuffs are moved and stored at the feed center, and rations are formulated, mixed, and delivered to animal housing barns. Chapter 3-19 (Feed center system design and management) reviews these principles of feed center design.
No farm can operate in a vacuum: every farm must exchange goods and services with the outside world to remain economically sustainable. A century ago, the “outside world” of a dairy farm was quite small and very local. The perishable nature of fluid milk, which was then the most common form of dairy food consumption, and transportation limitations forced numerous relatively small dairy markets in developed countries. Changes in consumption patterns coupled with advances in transportation and preservation technologies have shattered many market barriers, both domestically and internationally.

Economic changes induced by trade liberalization and globalization have resulted in a substantial increase in world dairy demand from developing countries. Throughout the world, a variety of dairy systems are used to supply the demand for fluid milk and manufactured dairy products. The economic competitiveness of the various systems used are compared in Chapter 4-20 (Changing global dairy markets: Comparison of dairy systems and economics).

Large dairy-producing countries such as the United States, which used to rely almost exclusively on their domestic markets to find a home for their dairy products, are now becoming increasingly dependent on exports. The historical evolution of milk production and changes in the trading patterns are reviewed in Chapter 4-21 (International and domestic dairy market landscapes).

Domestically, a large portion of US dairy policies date back to 1935 when Federal Milk Marketing Orders (FMMO) were established. The FMMO rules are designed to ensure an orderly marketing of milk and set minimum pay prices for more than 80% of grade A milk produced in the United States. The mechanism by which the United States Department of Agriculture (USDA) establishes minimum prices to dairy producers is the focus of Chapter 4-22 (Pricing farm milk in the United States).

Ultimately, all dairy producers around the world are exposed to the influence of large, worldwide, external forces. Understanding these external factors, most of them coming from beyond the boundaries of their own country, is becoming increasingly important to the successful management of all dairy enterprises.
Section 5: Genetic Selection Programs and Breeding Strategies

Kent Weigel

The objective of genetic improvement programs for dairy cattle is to enhance the profitability and sustainability of dairy farms and the health and well-being of their cattle. This objective is accomplished by selection of superior males and females as parents of the next generation of replacement heifers, utilizing genetic variation within or among breeds for traits that contribute to net profit by increasing income or decreasing expenses. Dairy cattle selection programs rely heavily on collection and analysis of vast quantities of pedigree and performance data, coupled with the use of assisted reproductive technologies and, more recently, genomic information.

Chapter 5-23 (Improving production efficiency through genetic selection) describes the evolution of milk recording and selection for increased income, through higher milk yield, improved milk composition, and enhanced feed efficiency. Gains in the productivity of dairy cows due to selection have been remarkable, and this progress has come from many decades of partnership between milk recording organizations, dairy records processing centers, AI companies, breed associations, land-grant universities, and the USDA Agricultural Research Service. The focus of selection has evolved through the years, with an initial emphasis on increasing milk yield per cow, followed by a shift toward efficient production of milk components and improved animal health. Managing inbreeding and maintaining genetic diversity requires vigilance and must be balanced with the competing goal of maximizing response to selection, particularly with high selection intensity and widespread use of advanced reproductive technologies. Genomic selection has been fully implemented by the dairy industry, and this will enable more rapid genetic progress, while also presenting opportunities to select for novel traits that were too difficult or expensive to improve in conventional progeny testing schemes.

Chapter 5-24 (Improving health, fertility, and longevity through genetic selection) focuses on decreasing expenses by enhancing fitness traits through genetic selection. Efforts to improve dairy cow longevity initially focused on physical conformation, through breed association type classification programs, but the emphasis has shifted to direct measures of fertility, productive life, udder health, and early postpartum metabolic disorders. Challenges exist in utilizing field data to select for improved animal health, due to issues such as incomplete reporting of health data, inconsistent diagnosis of disease events, and variation in exposure to specific pathogens. Nordic countries have led the development of selection programs for improved dairy cow health and fertility, due largely to the existence of national veterinary recording systems, but recently vast quantities of reproductive and disease data have become available from on-farm herd management databases in North America. Significant between-family variation exists in functional traits, despite large environmental influences, enabling improvement of such traits through genetic selection. Most selection programs now focus on general measures of fitness, such as length of productive life or number of days from calving to pregnancy, but new technologies will allow selection for specific immunological or physiological traits in the future.

Chapter 5-25 (Making effective sire selection and corrective mating decisions) covers the “nuts and bolts” of how dairy producers can use the tools of genetic selection to improve their herds. Selection of elite sires for AI, for the purpose of creating the next generation of replacement heifers, has provided an inexpensive and highly effective means of improving the genetic potential of dairy herds worldwide. Dairy farmers have many tools at their disposal for maximizing net profit, with the goal of increasing revenues from milk sales while decreasing expenses due to feed, veterinary, labor, and replacement costs. Index selection is preferable to independent culling levels, because of its ability to accommodate objective economic weights, account for genetic relationships between traits, and allow vast superiority in one trait to make up for a slight deficiency in another. Computerized mate selection programs are used widely; such programs are useful for controlling inbreeding and avoiding inherited defects, but careful selection of service sires is more important than allocation of individual sires to specific mates.

Chapter 5-26 (Capitalizing on breed differences and heterosis) presents options for farmers who wish to improve profitability of their herds by crossbreeding, typically by exploiting breed differences and capturing hybrid vigor for health and fitness traits. Genetic improvement of dairy cattle has largely relied on within-breed selection, but challenges with managing inbreeding and maintaining fitness have led to
increased interest in crossbreeding systems. Although the Holstein breed still enjoys a significant advantage in milk yield, there are opportunities to improve calving ability, female fertility, early postpartum health, and milk composition by crossing with the Alpine, Red Dairy Cattle, and Jersey breeds. Successful crossbreeding schemes combine intense within-breed sire selection with careful matching of key breed attributes with farm-specific management practices and economic objectives. Maintaining heterosis (hybrid vigor) in second and later generations of a crossbreeding program is critical, and 3-breed rotational systems provide an excellent opportunity to balance breed selection, hybrid vigor, and simplicity.

Chapter 5-27 (Genomic selection and reproductive technologies to optimize herd replacements) talks about how modern genomics tools can be applied on commercial farms that focus solely on the production and sale of milk, rather than elite breeding stock. Inexpensive low-density genomic tests, coupled with subsequent imputation of genotypes to higher density, have facilitated rapid implementation of this technology—tens of thousands of dairy calves are now tested each month. Detailed knowledge about the genetic merit of heifer calves, coupled with the availability of gender-enhanced semen, has created opportunities to optimize the management of replacement heifer inventories. Early culling of heifer calves with poor genetic merit is the "low-hanging fruit" in terms of genomic selection on commercial dairy farms, and this practice can improve the efficiency of utilizing land and feed resources. The long-term impact of genomic selection will depend on the development and implementation of new tools and strategies for using this information, such as mate allocation programs and genome-guided management systems.

Chapter 5-28 (Genomic selection and reproductive technologies to produce elite breeding stock) discusses options for farms that seek to move into the genetic improvement “fast lane” using modern genomic tools and assisted reproductive technologies. Genomic selection allows early identification of animals with outstanding genetic merit, creating new options for enhancing genetic progress in economically important traits. Genomic testing of potentially elite young males and females has become commonplace, and this has revolutionized dairy cattle breeding programs that were built on a foundation of progeny testing bulls for sex-limited traits expressed in their daughters. Dairy genetics companies, as well as some leading pedigree breeders, have invested heavily in programs that seek to maximize the synergies between genomic testing and assisted reproductive technologies. Genomic selection will enable improvement of traits that are expensive and difficult to measure on the general population, such as feed utilization efficiency, while also allowing the identification of families with attributes that are valuable in specific markets or management conditions.

Collectively, these 6 chapters describe the past, present, and future of genetic selection programs for dairy cattle. There is something for everyone: farms that want to develop and market elite breeding stock using genomic and reproductive technologies; farms that seek to maximize the amount of milk shipped per day through genomic selection and intensive nutrition and management; and farms that seek to sell more modest quantities of milk while reducing costs associated with labor, facilities, replacement animals, and veterinary interventions. The modern dairy cow is marvelously adaptable, in the sense that she can perform in intensive systems with year-round housing and stored feed, as well as under extensive management conditions with seasonal calving and pasture-based production. Genetic variation exists in essentially every biological trait that contributes to dairy farm profitability and sustainability, so the key is to develop effective data collection systems for these traits, weight them appropriately in an economic index, and ensure that selection goals are in line with market demands and environmental conditions.
The herd replacement enterprise represents a major expense on the dairy. In addition, it has a major effect on future herd productivity and profit. An aggressive colostrum management program and a high-quality feeding program support genetic potential for growth and enhance resistance to morbidity and mortality. Housing and management systems should enhance the animal’s environment and promote labor efficiency. After weaning, the challenge is to provide conditions that encourage uniform growth at the most reasonable cost. Well-grown heifers achieve a high level of reproductive efficiency and calve at an early age with the ability for high milk production and longevity.

The objectives of a herd replacement program are to provide a sufficient supply of replacement animals to enter the herd on a timely basis with the body size and condition to enable them to produce to their genetic potential. Chapters 6-29 (Management of the newborn calf) and 6-33 (Disease prevention and control for the dairy heifer) cover essential aspects of this critical early period. There is no single best system of rearing heifers because “success” is predicated upon the most effective use of the resources available to the dairy. Extensive systems utilizing more pastoral resources can be just as successful and profitable as more intensive confinement systems. However, any system should be focused around critical times of the heifer’s life: birth to weaning, during transition from a liquid diet to a ruminant diet, and from about 6 mo of age until the heifer enters the milking string.

Research and practical experience of progressive dairy farms has demonstrated the importance of an effective colostrum management program on not only health and growth of the preweaning calf but also on mammary development and productive performance once the heifer enters the milking herd (Chapter 6-30: Nutrition of the preweaned calf). The calf should be born in a clean environment with a minimum of stress and consume sufficient colostrum to deliver more than 150 g of immunoglobulin G (IgG) within the first few hours of birth. Additionally, non-IgG components may affect development of the absorptive abilities of the intestine, as has been observed when calves are fed “transition milk” for the first few days of life.

Meeting the nutritional requirements of the calf for maintenance and growth requires a diet comprised primarily of milk or milk replacer early in the preweaning period with consideration of the effect of environment on maintenance requirement. Colder temperatures (below the calf’s thermoneutral zone) and suboptimal bedding and ventilation may require feeding in excess of 8 L of milk or milk replacer to support desired growth to enable the calf to double its birth weight within 56 d. In addition to supporting a reasonable rate of gain the calf should be fed to stimulate development of the digestive system from a monogastric to a ruminant system capable of digesting more fibrous feeds (Chapter 6-31: Calf transition: Managing and feeding the calf through weaning). This is achieved by feeding a palatable calf starter concentrate containing ~18% to 22% crude protein with sufficient levels of starch and fermentable carbohydrate to stimulate the growth of fermentative bacteria and rapid differential growth of the ruminant digestive system. Limiting the intake of the liquid diet after 4 to 5 weeks of age stimulates the calf to consume dry feed. Successful transition feeding management can be achieved with pelleted or textured calf starters, provided that they are palatable and possess the desired levels of nutrients.

Provision of fibrous feeds such as hay, straw or other high fiber feeds can be included in the diet before and just after weaning as long as it does not restrict energy intake and growth.

Weaning is a potentially stressful time and can predispose the calf to respiratory or other diseases if the transition to the diet comprised solely of dry feeds is too abrupt or there are behavioral or environmental stresses.

After weaning and when calves are consuming sufficient dry calf starter grains to maintain desired growth, calf starter may be replaced with less expensive “grower concentrates,” and forages may be introduced to the diet in larger amounts (Chapter 6-31). Forage quality for younger calves is important and forage should be palatable, with a minimum of dustiness, and provide sufficient nutrients to complement the grower concentrate.

From about 6 mo to weaning, the priorities for success change. These older heifers are consuming more daily DM, and excellent BW gains can be obtained with an increased proportion of forages and byproduct feeds. The primary consideration for this period is to...
achieve a rate of gain that enables the heifer to be bired at the desired age (Chapter 6-32: Feeding management of the dairy heifer from 4 months to calving; and Chapter 6-34: Economic considerations regarding the raising of dairy replacement heifers). Composition of gain (lean vs. fat tissue) is determined by the proportion of protein and energy in the diet. Reproductive management determines the days on feed, which is a major determinant of age at first calving, length of the rearing period, and, therefore, rearing expenses. In most breeds of dairy cattle, there is an optimum range for first calving age. Calving at the extremes involves risk of decreased milk yield, excessive rearing expenses, or other issues that may affect animal health. Calving at an earlier age requires higher average daily gains and more expensive, nutrient-dense rations. Excessive weight gains before puberty have been associated with impairment of mammary development, increased calving difficulty, and reduced first lactation yield. The advantage of earlier calving (within the optimum range) is fewer days on feed and earlier income from milk sales. Calving beyond the desired range involves more days on feed and higher rearing expenses that frequently are not offset by higher milk yield.

Achieving calving at the desired age and BW can be achieved in a variety of management scenarios. Less extensive systems involving pasture can provide economical BW gains, but the challenge of providing consistent gains and achieving the desired age at calving is a challenge, especially in many colder or extremely dry climates. High-forage diets and those utilizing byproduct feeds can reduce feed cost per unit of diet intake, but usually at higher levels of daily intake. Research has shown that formulating diets to provide required nutrients at less than ad libitum intake can lead to improved nutrient efficiency and reductions in manure nutrient excretion, which affects whole-farm nutrient balance.

The dairy industry must continue to support research to ensure that the dairy cow is an efficient producer of food for our growing world population. This research should be focused on improving our knowledge of the biology of the dairy animal and in improving management systems that ensure the dairy industry is a good steward of the world’s resources and that dairy animals are cared for in a manner that enhances their welfare. Recent research is finding that the prepartum environment and immediate postpartum experiences of the calf can have lasting effects upon growth, development, and immune function. We are learning that consumption of fresh colostrum from the dam can enhance immediate and later immune function. In addition, other non-immunoglobulin components of colostrum can enhance development of the digestive system when colostrum and transition milk are consumed for several days. Future research should be directed toward determining how we might enhance the diet of the calf before weaning to enhance its growth and development. Early neonatal nutrition through more liberal feeding of milk or milk replacer enhances growth but also appears to enable some genes to be expressed in a manner that may enhance the future productivity of the animal. This will likely be an active field of research.

Chapter 6-35 (Facility systems for the young dairy calf: Implications for animal welfare and labor management) discusses housing options for calves. Traditionally, calves have been housed individually in a variety of systems with the logic that this limits spread of disease and facilitates disease detection and feeding management. However, recent research has demonstrated that housing calves in pairs or groups after weaning promotes improvements in calf behavior and may be a more desirable housing system. Providing an opportunity to interact with other calves encourages earlier consumption of dry feed and minimizes the drop in body weight gain commonly observed when calves housed individually before weaning are placed into groups. New group housing systems such as those utilizing mob feeders, acidified free-choice systems, or computerized calf feeders enable calves to consume greater quantities of their liquid diet, which facilitates calf growth during the first few weeks of a calf’s life. Adoption of these group-housing systems has revealed that designing facilities that are well ventilated and drained are essential to achieving desired growth and a low incidence of morbidity and mortality. Group-housed calves may improve labor efficiency, but in more cases, they reduce the mundane tasks involved with calf feeding and enable the calf manager to spend more time addressing the needs of the calves.

The transition to group housing from individual housing systems is likely to continue (Chapter 6-35). Research from leading behaviorists is demonstrating actual and perceived benefits to animal welfare. Many group-housing systems also provide an environment more favorable to calf caregivers. As more calf and heifer record systems become automated, more information will be available to determine the effect of management decisions not only upon rearing expenses but also on productivity and profitability.
Section 7: Reproduction and Reproductive Management

William W. Thatcher

Dairy production systems evolved dynamically to a point that scientists, producers, veterinarians, and allied industries have a clear awareness that fertility of the lactating cow and the herd underwent a period of subfertility. This is evident by a phenotypic decline in daughter pregnancy rate (DPR) from the mid-1970s, a nadir in the late 1990s, followed by an increase in DPR to a level in 2010–2012 comparable to what was achieved in the late 1970s. This dynamic trend of reproductive performance occurred in contrast to a steady increase in milk production per cow. The recrudescence of improved reproductive performance reflects the needs and challenges to integrate the disciplines of physiology, management, nutrition, genetics, economics, veterinary herd health/production medicine, and inputs of allied industries. The integration of these systems reflects the multifactorial challenges to integrate reproductive processes of the cow. The major objective of the Reproduction and Reproductive Management section is to provide the dairy industry with holistic science-based approaches that affect the totality of the dairy operation in making decisions to enhance reproductive efficiency and health and well-being of the dairy cow and herd. Such improvements enhance overall economic profitability of the dairy operation.

Contributions in this section comprise a cross-section of excellent and prominent scientists that collectively integrate the development and implementation of reproductive management. The material and recommendations presented are predicated on science-driven basic and applied research proven to be applicable for the dairy operation. The material presented builds on prior editions of *Large Dairy Herd Management*, the scientific literature, and joint experiences between allied industries, dairy producers, veterinarians, and investigators. It represents a status report as of 2016, comprising 9 chapters with links to other collateral chapters and topics that specifically affect reproduction and reproductive management.

The basic components of the estrous cycle of heifers and lactating dairy cows (Chapter 7-36: The estrous cycle of heifers and lactating dairy cows) focuses on ovarian (follicle and corpus luteum) and hormonal dynamics, as well as estrous cycle abnormalities. The basic normal biology of the estrous cycle is developed, which is essential for producers, managers and staff to understand the components of reproductive management strategies to optimize fertility. Likewise, an understanding of the normal biology allows for dealing with the estrous cycles of high-producing dairy cattle and a major syndrome of “anovular cows” that affects reproductive success at the time of the programmed voluntary waiting period.

A basic understanding of the estrous cycle is the foundation for development of aggressive reproductive management programs (Chapter 7-37) to inseminate dairy cows at a precisely controlled time with good fertility (i.e., pregnancy per AI). This coupled with either early diagnosis of pregnancy by ultrasound or plasma measurements of pregnancy-associated glycoproteins permit an efficient resynchronization of cows failing to conceive to the first service. Understanding of the various programs is essential to tailor a program that best fits the characteristics of the dairy operation. Novel systems for automatic detection and prediction of estrus offers the producer a complementary component within the reproductive management system (Chapter 15-94: Automated detection and prediction of estrus as a complementary technology for reproductive management). In 2015, well-managed dairy operations reached annual 21-d pregnancy rates ranging from 32 to 39%. Overall reproductive management is an essential component of this success.

Reproductive management of dairy cows for seasonal breeding, associated with pasture-based dairy systems, is an alternative and challenging mindset compared with challenges of intensive dairy management systems. Pasture-based dairy systems are typical in New Zealand, Ireland, and some areas in the southern United States. Reproductive management of seasonal calving systems requires a high level of reproductive performance to sustain a 365-d herd calving interval that is coupled with nutrient requirements and availability of pasture. Factors associated with reproductive success are the focus of Chapter 7-38. Reproductive constraints are quite comparable between extensive and intensive dairy systems, but overall management systems are more holistic seasonal systems to meet the challenges of environment, nutrition, and breeding systems (AI and natural service). Herd benchmarks for success in
seasonal calving systems are tailored, rightfully so, to the inherent availability of pasture (i.e., quality and quantity), management of pasture and cow, the integrated breeding program, and “Fertility Focus” reports for herd improvements.

The most critical window in the life cycle of dairy cows is the peripartum period associated with birth of the calf and subsequent vulnerability of the cow to postpartum uterine and metabolic diseases. Understanding and managing postpartum uterine diseases (Chapter 7-39) is critical to potential reproductive success. Complexity of postpartum management is also affected by nutritional management during the transition and postpartum periods (Chapter 8-57: Ensuring access to feed to optimize health and production of dairy cows, and Chapter 12-75: Behavior of Transition Cows and Relationship with Health). Of course, skilled assistance and good hygiene at calving are critical in reducing subsequent bacterial challenges to all cows at the time they undergo a transitional reduction in immune function. Careful monitoring of postpartum uterine status is essential for diagnosis to target therapy to cows that will benefit from appropriate treatments. Future development of vaccines and tools for genetic selection likely will reduce the incidence of postpartum reproductive diseases and further improve reproductive performance.

Essential to evaluation of reproductive performance is the ability to monitor and quantify the economic value of change in reproductive management (Chapter 7-40). The economic response not only resides on the specific reproductive management program and its biological effectiveness (i.e., pregnancy rate of eligible cows followed through lactational time over sequential 21-d periods) but also needs to encompass the basic parameters within which the dairy operates, accurate farm-level records, and expected market-specific parameters. Adjustable and adaptable decision-support tools are now available for producers to evaluate the economic impact of changes in reproductive management.

Optimal integration of the AI center and dairy producer is essential for effective selection and use of the bull to achieve high herd fertility (Chapter 7-41). In the early decades of the 21st century, a thorough understanding of the journey of sperm to subsequent performance value of offspring is a combination of utilizing well-established procedural processes combined with technological breakthrough. All of these components are available to the producer for effective utilization, and a clear sequential platform of opportunities is provided and complements a link with Chapter 5-27 (Genomic selection and reproductive technologies to optimize herd replacements).

Heat stress is a major limitation to optimal reproductive performance of the lactating dairy cow that disrupts many of the early reproductive processes of follicle and embryo development. Furthermore, seasonal periods of heat stress reduce both detection of estrus and duration of estrous behavior, as well as semen quality and libido in the male. Chapter 7-42 addresses the physiological thermo-regulatory responses of the cow and reproductive biological windows that are adversely affected that lead to temporal periods of reduced fertility. Although modified housing systems that cool cows improve milk production, the benefits on reproductive performance are not profound, even when coupled with the use of reproductive management such as timed AI. Additional strategies of embryo transfer and treatments with antioxidants and hormones are evaluated. Furthermore, the prospects of developing dairy cattle with a greater genetic potential to produce large amounts of milk and an enhanced ability to regulate body temperature are addressed. This includes introduction of specific gene variants for thermal tolerance through the use of traditional breeding or genomics and possible gene editing technology as applied to the early embryo (Chapter 7-44).

It is now recognized that heat abatement management during the dry period (i.e., late gestation) has marked benefits on subsequent performance and health of the cow in the subsequent lactation. Furthermore, reduction in heat stress during late gestation has profound and far-reaching programming effects that are beneficial to the health and well-being of the calf, its subsequent growth, as well as milk production during first lactation. This biological phenomenon in late gestation and its regulation is the focus of Chapter 7-43. Late gestation is a physiological window that can be improved markedly when producers provide adequate cooling of cows in the dry period.

A repertoire of assisted reproductive technologies (ART) are used in dairy production, as new avenues to enhance genetic merit of dairy cattle. Chapter 7-44 provides a clear description of the reproductive technologies, strategies for their utilization, and an objective assessment of the pros and cons for utilization. The dairy industry has pioneered the use of ART with the extensive use of artificial insemination. Additional technology and advancements have evolved that include sexed semen, ovum pick-up (OPU) through ultrasound guided removal of the oocyte, superovulation, embryo transfer, in vitro fertilization (IVF), and cloning via
somatic cell nuclear transfer. These technologies combined with genomic typing and gene editing offer new on farm strategies to increase the genetic merit of cows for production and reproduction (Chapter 5-27) and reducing the generation interval.

Continued progress in the areas of cell biology, nutraceuticals to optimize reproduction and lactation, novel and biocompatible delivery systems of biological regulatory factors, genomic selection within the biological networks of the bull and cow, use of computer technology to monitor biological processes and forecast treatment-management needs, viable offspring produced from custom tailored embryos with high fertility are but a few examples for the future.
This page intentionally left blank
Nutritional Applications for a Progressive Dairy Industry

Nutrition is central to the productivity, health, and well-being of dairy cattle. For most dairy farms, feed costs represent approximately 40 to 60% of total costs. Therefore, successfully feeding the dairy herd requires integration of the latest research knowledge and economics to optimize income over feed cost and dairy farm efficiency.

In the years since the second edition of *Large Dairy Herd Management* (ADSA, 1992) was published, nutrition research and peer-reviewed studies have continued to add to the published database available to the dairy industry. However, much of the latest nutritional research may be found in scientific journals that are rarely read by dairy producers and allied industry. Therefore, a primary goal of this publication is to package important nutrition information in an applied format, with practical implications, and bring it to progressive dairy producers, consultants, university students, and other allied industry. The authors of the chapters in this section have provided a cutting-edge review of their nutrition topic along with their insight on how to best take advantage of the information on farm.

One important note: there are no tables of feed ingredient composition or systematic tables of nutrient requirements by physiological stage in these chapters. This information can be readily found in publications such as the National Research Council *Nutrient Requirements for Dairy Cattle* (NRC, 2001).

A review of published dairy nutrition research by Eastridge (2006) found that forages have been researched more extensively than any other type of feed. Thus, it is no surprise that we have chapters on forage harvesting and storage (Chapter 8-53) plus a carbohydrate chapter (Chapter 8-47) that focuses particularly on forage quality and its influence on metabolic and productive responses of dairy cattle. Another chapter delves into optimal feed and forage sampling on-farm (Chapter 8-52) to provide the best analytical values for ration formulation. For farms of any size, but especially for larger farms, accurate feed and forage sampling and analysis represent a substantial opportunity.

Grain processing continues to generate voluminous amounts of byproduct feeds that economically provide valuable dietary nutrients and reduce the overall environmental footprint of food production systems. In this section, the reader will find a chapter devoted to effectively feeding byproducts and non-forage sources of fiber (Chapter 8-54).

Eastridge (2006) points out that the major feeding system in the United States is the total mixed ration, although pasture systems are used in geographical regions where the land and other resources allow. Grazing systems are covered in another section of this book, but the reader will find a chapter in the nutrition section focused on total mixed ration feeding and delivery systems (Chapter 8-55). Successful feeding of dairy cows requires accurate mixing and delivery of rations so that the diet fed and consumed is the same as the diet formulated. This chapter summarizes years of on-farm experiences across the entire spectrum of feeding systems.

The feeding environment may have as much, if not more, influence on the cow than the diet itself and so we focus also on feeding system management (Chapter 8-57). Management factors such as feeding frequency, feed availability, and stocking density all will affect the competition for feed and cow productive and health responses to the formulated ration.

Research continues that should enhance our ability to efficiently use protein and amino acids, carbohydrates, lipids, minerals, and vitamins in dairy cattle diets. A series of 5 chapters summarize the latest information for each of these nutrients with an emphasis on practical applications and field implementation of the information (Chapters 8-46, 8-47, 8-48, 8-49, and 8-50). Much of the emphasis is on optimizing ruminal carbohydrate, protein, and lipid digestion to boost flow of microbial protein as this remains fundamental to predicting dairy cow performance.

Water is the most important nutrient for dairy cattle and they suffer more quickly and severely from inadequate water than any other nutrient (NRC, 1978, 2001). Consequently, a chapter focuses specifically on water requirements and on-farm considerations to optimize water consumption (Chapter 8-45). Importantly, the chapter recommends new water intake prediction equations to use on-farm that improve on the commonly used prediction equations reported by the NRC (2001) dairy model.
Over the past decades, research aimed at the transition period has exploded. The periparturient period provides nutritional challenges that must be met to minimize the incidence of metabolic and other diseases. Two chapters in the nutrition section are devoted to transition cow nutrition (Chapter 8-51) and nutritional diagnostic troubleshooting (Chapter 8-56). Finally, the well-known interaction between nutrition and reproduction has been updated with specific recommendations on feeding strategies to enhance the herd’s reproductive performance (Chapter 8-58).

Practical Application and Implementation of Nutrition Concepts

A strength of each nutrition chapter includes its focus on practical, on-farm implementation of current research. Key examples include the following:

- Water needs to be routinely tested, and the most common challenges include salinity, high concentrations of sulfates, iron, nitrate, and microbial contamination.
- Optimizing nitrogen efficiency on a dairy farm requires a commitment to using nutritional models and amino acid balancing.
- Properly measuring fiber digestibility and taking advantage of it will continue as a major focus of farm profitability. This will be especially critical when high-forage diets are fed.
- Properties of fat sources must be understood, with ruminally available fat sources used first, and then specific inert fats selected based on the goals of the individual farm’s feeding program.
- A variety of nutritional management approaches can be used for dry and fresh cows—no single optimal strategy will work for every farm.
- Basic operating protocols need to be in place on all dairy farms to ensure the proper implementation of the ration and feeding system. These protocols are explained in detail in this section.

Future Needs and Developments in Nutrition

The chapters in this section provide the latest information on a wide range of nutrition topics. As we look to the future, we will certainly continue to learn more about better measuring the content and availability of dietary nutrients, and the implications for cow responses at various stages of the cow’s life cycle. Nutrition models will become increasingly dynamic and accurate, and their usefulness as educational and on-farm ration formulation tools will expand. Already today, and even more so in the future, required inputs for nutrition models will likely drive development of new or improved laboratory feed and forage assays.

Precision management will also increasingly impel nutrition research as the focus on efficiency of nutrient use intensifies. A critical research area will be to better understand the interaction between the formulated diet and the management environment. Factors within the social and physical environment modulate the cow’s responses to the diet and greatly affect our ability to precisely and economically feed the dairy herd.

Although no crystal ball is perfect, it seems safe to predict that forages will continue to play a major role in nutritional schemes for dairy cattle, together with targeted use of regionally economical nonforage sources of fiber. In many ways, research published to date has only scratched the surface of understanding ruminal dynamics and associated cow productivity and health. Similarly, the burgeoning research on ruminal modifiers and other feed additives will continue as the dairy industry searches for tools that improve cattle digestive efficiency.

The chapters in this section provide a comprehensive, practical, cutting-edge review of dairy cattle nutrition. The information contained in these chapters provides an essential foundation for the reader to understand and anticipate future developments in the field of nutrition and feeding management.

REFERENCES

Section 9: Lactation and Milking Systems

Rupert M. Bruckmaier

The milk produced in the cow’s udder is the basis for the income of a dairy farm. On the other hand, milking is usually the process with the highest daily working time on a dairy farm. The choice of an adequate milking system related to the individual requirements of the farm and the optimal interaction between the cow’s physiological regulation, the technical specifications of the milking system, and the quality of the work of the employees are all crucial in optimizing the quantity and quality of the harvested milk, udder health, and daily working time invested for milking.

Basic research with new analytical approaches continues to create new insights on the biological processes and their interaction with on-farm technology. This new knowledge can be used to adjust or develop management strategies of mammary gland function from rearing to lactation, as well as milking technology. This section includes current knowledge on the physiological regulation of mammary gland development during rearing, and the endocrine, autocrine, and paracrine regulation of the mammary gland during lactation. Although the milking system with vacuum-based milk removal and cyclic opening and closure of a soft liner in the teat cup was introduced more than 100 yr ago, milking machines have not yet reached the goal of optimally mimicking a sucking calf. The current state of the art in milking technology and its interaction with physiological regulation is an important topic to optimize dairy farming. The milking machine can only suck the milk out of the udder that has been ejected into the udder cistern through a neuro-endocrine reflex of the cow.

Finally, an enormous variety of milking systems are available on the market. The success of a dairy farm depends on the selection of the most suitable system designed for the conditions of a particular farm and its herd and group size, environmental conditions, and availability of labor.

Chapter 9-60 (Regulation of the lactating mammary gland) focuses on regulatory mechanisms of milk synthesis and their manipulation during ongoing lactation. Several management strategies have been adopted to maximize milk production, most of them based on endocrine, autocrine, and paracrine mechanisms. The authors of this chapter highlight methods including the administration of hormones such as somatotropin or prolactin and prolactin inhibitors. Important methods to optimize milk production are the manipulation of day length during dry period and lactation, and the management of negative regulators of milk synthesis through the adjustment of milking frequency.

Chapter 9-61 (Oxytocin and the regulation of milk ejection during machine milking of dairy cows) shows the importance of milk ejection because only up to 20% of the milk is immediately available for the milking machine, whereas the main portion of milk is fixed by capillary forces as in a sponge. Only tactile teat stimulation induces the release of oxytocin and alveolar contraction to shift the milk into the udder cistern. The importance of pre-stimulation to avoid milking of empty teats and premature climbing of the teat cup, or possible alternative strategies such as reduced teat-end vacuum and short b-phase of pulsation before milk ejection are discussed. Aspects of disturbed milk ejection due to lacking oxytocin release and use of exogenous oxytocin are discussed as well.

Chapter 9-62 (Milking machine management) explains the fundamental biomechanics of milk removal by the milking machine. Machine milking is a compromise of the 3 most important goals, maximum milking speed, and completeness and gentleness of milk removal. The chapter explains the consequences if one of these goals is not sufficiently considered or is impossible to reach. The chapter describes the development of teat-end hyperkeratosis because of high mechanical
load on the teat and the related scoring of severity. Consequences of overmilking, the interaction of milking machine characteristics and risk of mastitis, as well as cleaning and sanitation of the milking machine are further topics.

Chapter 9-63 (Milking systems for large dairy herds) presents guidelines to choose the right milking system for the circumstances of each individual farm with respect to herd and group size, environment, and available labor. The available systems are traditional parlors (herringbone or parallel) of different sizes, rotaries, and automatic milking systems. The systems may be equipped with automatic pre-stimulation, automatic cluster detachment, automatic dipping, and so on. Different automatic detection systems for udder health parameters are discussed, as well as different types of holding pens and cow traffic to optimize the throughput and capacity of a milking system.
Mastitis is the inflammation of a mammary gland almost exclusively caused by an infectious bacterial agent entering the gland, multiplying, evading the cow’s host defenses, and ultimately causing harm to the host. Harm to the host is manifested by reduced milk production, reduced quality of the milk produced, and impairment of the animal’s well-being. The economic impact of mastitis affects all aspects of the dairy industry from the individual dairy producer throughout the processing and marketing of milk products. Although great strides have been made in controlling mastitis, the disease continues to present producers and veterinary health professionals with evolving issues as dairy herds increase in size and complexity of operation. Mastitis and milk quality management practices in the next 10 years will continue to focus on applications to ensure that safe, nutritious milk products are available to consumers. Current political trends indicate these practices will be less dependent on the use of antimicrobials to treat and prevent intramammary infections, a cornerstone of mastitis control during the last half century. Prevention of mastitis will remain the primary emphasis by applying management practices that ensure well-being of cows and minimize possibility of adverse effects on the consumers and the environment.

The central key elements to controlling bovine mastitis (or any other infectious disease) are to either reduce exposure of the cow to potential pathogens or to enhance the cow’s host defenses against the agents if preventing exposure fails. By far, the greatest advances in controlling mastitis have been gained by reducing exposure of cows to potential pathogens by eliminating the source of pathogens and reducing the transmission of pathogens to uninfected mammary glands from sources that cannot be eliminated. This is true for both contagious mastitis pathogens transferred from infected glands to uninfected glands (Chapter 10-64) and environmental pathogens transferred to uninfected glands from the cow’s surroundings (Chapter 10-65). Culling chronically infected cows and antibiotic therapy of infected mammary glands at the end of each lactation are effective means of reducing infected glands in the herd that serve as the source of contagious pathogens in the herd. Milking hygiene reduces the likelihood that contagious pathogens are transferred from infected to susceptible glands. Control of exposure to environmental pathogens has similar applications. Bedding materials are a primary source of environmental mastitis pathogen; thus, the type of bedding chosen for cows to lie upon will greatly affect the amount of exposure to these bacteria. Many common bedding materials have low mastitis pathogen populations before use but bacteria from feces contaminate and multiply rapidly in bedding. Management practices that stress bedding hygiene and selection of bedding materials not conducive to bacterial growth will help minimize exposure to these mastitis pathogens. As the number of cows in a dairy herds increases, any source of either environmental or contagious mastitis pathogens has the potential to negatively affect a greater number of animals and their resulting milk production. Future considerations in minimizing exposure to mastitis pathogens will continue to explore biosecurity measures for detecting and monitoring levels of contamination in both infected animals and inert material brought onto farms serving as potential sources of pathogens to the herd. Also, likely in the future is an increase in mechanization of tasks to ensure that sources of mastitis pathogens present in the herd will have minimal risk of transfer to uninfected cows.

Successful management practices to enhance the host defenses of the bovine mammary gland against intramammary infections and inflammation have generally been those targeting a short period within the lactation cycle (Chapter 10-66). The susceptibility of cows to intramammary infections and mastitis is greatest during active involution from lactating to nonlactating and during the periparturient period. Innate and inducible host defenses are compromised during these stages of lactation compared with those during lactation and steady state involution. The lactational periods of heightened susceptibility to mastitis coincide with physiological events resulting in oxidative damage of cells associated with mammary defenses. Increasing physiological concentrations of anti-oxidant micro-nutrients by dietary supplementation during the dry period reduces severity and duration of cows infected in the periparturient period. Likewise, administration of exogenous immune simulators such as recombinant cytokines have shown potential for short-term mediation of reduced immune competency during times of heightened mastitis susceptibility.
The individual dairy herd continues to be the focal point of application for management practices and strategies to control mastitis (Chapter 10-67). How animals are grouped for feeding, reproductive functions, and exercise also affects mastitis control procedures. A major struggle for controlling mastitis in large dairy herds is the determination of optimum cow density while minimizing exposure to pathogens and maintaining mammary host defenses. Globally, pasture-based systems are part of the total management scheme for cows in many large dairy herds. Pasture-based systems need to include adequate time for pathogens loads on paddocks to decrease between grazing periods. Management systems integrating either confinement or pasture-based systems must offer adequate area per cow, allowing for the changes in host defenses associated within the lactation cycle of cows. Sacrifice paddocks used to congregate seasonal-calving herds during the parturition season often deteriorate whereby pathogen exposure increases and the condition of teat skin deteriorates to hasten intramammary infections. Future emphasis in large dairy herds managing cows in both confinement and pasture-based systems will be to optimize environmental conditions for cows and heifers at calving. Maintaining stocking rates to minimize pathogen exposure and to maximize the cow’s host defenses will be essential to reduce mastitis and assure milk quality.

Vaccines against specific mastitis pathogens have been used decades with consistent results (Chapter 10-68). Those vaccines that elicit adaptive immunity against infectious agents result in a reduction in severity and duration of mastitis. This positive effect of mastitis vaccines is most evident when maximum humoral responses coincide with time of heightened susceptibility, such as parturition. However, mastitis vaccines have not been shown empirically to prevent intramammary infections. Future advancement in increasing cow resistance to mastitis will progress only as our understanding of the cow’s host defenses and mastitis pathogen virulence traits progress. Successful development of strategies to enhance resistance against mastitis will also need to include logical means of application to cows in large dairy herds and assurance of minimal risk to the safety cows and the human consumers of milk from these cows.

Mastitis, milk quality, and food safety are interrelated (Chapter 10-69). Many common mastitis pathogens can also cause diseases in humans, but pasteurization of milk effectively eliminates most of the potential transfer of pathogens from milk to human. Despite the documented safety of pasteurized milk and dairy products for human consumption, an increasing number of consumers are consuming unpasteurized milk products at a heightened risk of pathogen transfer. The effect that mastitis has on this risk to human health is obvious by the positive correlation between incidence of mastitis increasing in a herd and the risk of milk being contaminated with pathogens. Two additional potential health risks to consumers of milk that increases with increased incidence of mastitis in a herd are the possibilities of antibiotic contamination of milk and increased antimicrobial resistance of mastitis pathogens. Consumer pressure has necessitated development of practical mastitis treatment protocols for large dairies that are effective, economical, and minimize non-essential usage of antimicrobial products. Animal health managers should perform mastitis treatment protocols in consultation with herd veterinarians. Future advances in this area likely as societal expectations for large dairy herds focus on ensuring animal welling while reducing antibiotic usage.

Mastitis is an important failure cost on dairy farms. In Chapter 10-70, the authors present a 10-step plan for analysis of records on somatic cell counts and mastitis using the DairyComp 305 dairy management information program and custom Microsoft Excel charts. Concepts are illustrated with data from 22 herds. The authors lead the reader through the interpretation of the results and give benchmarks as triggers for action. The authors give the DairyComp commands to create most of the charts.
The idea of maintaining and improving the welfare of dairy cattle is not new. As stated by von Keyserlingk et al. (2009) “producers have always been concerned about the condition of animals in their care and have tried to ensure that they are healthy and well nourished.” In fact, as mentioned by von Keyserlingk and Weary (2016), keeping cows healthy and productive has long been a cornerstone of good husbandry, and thus viewed as part of ensuring good welfare. Nonetheless, we know that concerns of animal welfare go beyond ensuring good animal function.

Two decades ago, Fraser et al. (1997) introduced the concept that animal welfare includes 3 types if concern: (1) is the animal functioning well (biological functioning), (2) is the animal feeling well (affective state), and (3) is the animal able to live a reasonably natural life (natural living). Dairy producers are naturally concerned with sustaining good animal function, in terms of growth, reproduction, production, and health, to maintain farm economic viability. However, there is growing concern from those not directly involved in primary agricultural production, and arguably by a growing proportion of producers, that cattle must be cared for in a manner that minimizes any unpleasant feelings such as pain, fear, or hunger (Weary et al., 2016). More recently, we see an increasing interest that animals, including cattle, should also have opportunities to experience positive emotions (Proctor and Carder, 2015). Further, there also is growing concern over whether cattle are kept under conditions that may limit their ability to perform natural behaviors, which they are highly motivated to perform. These concerns were highlighted in a recent survey performed by Cardoso et al. (2016), where public citizens indicated that “providing assurances that animals are well treated, developing methods to incorporate pasture access, and ensuring healthy products without relying on antibiotics or hormones” are all characteristics of an ideal dairy farm.

It is not surprising, therefore, that the 3 key concepts of animal welfare are included in definitions held by various legal, regulatory, and oversight bodies; for example, the World Organization for Animal Health (OIE) defines good welfare for an animal if it is “healthy, comfortable, well nourished, safe, able to express innate behavior, and it is not suffering from unpleasant states such as pain, fear, and distress” (OIE, 2013). As such, these concepts are shaping industry standards, regulations, and laws pertaining to care and welfare of dairy cattle.

In this section, we have addressed issues pertaining to animal and herd welfare that go beyond that covered in other sections of this book, specifically those pertaining to providing good nutrition, housing, management that not only minimize risk of disease or injury, but optimize growth, reproduction, productivity, and, thus, welfare of dairy cattle. This section includes chapters focused on 4 specific topics related to animal and herd welfare: (1) on-farm assurance of dairy cattle welfare (Chapter 11-71), (2) protocols for dealing with compromised cattle (Chapter 11-72), (3) proper handling techniques of cattle (Chapter 11-73), and (4) managing and avoiding pain associated with elective procedures (Chapter 11-74). The contents of these chapters are briefly summarized below.

Dairy cattle welfare assurance programs exist in various formats including industry-based, non-mandatory welfare codes, government regulations, product-differentiation (labeling programs), and corporate specifications. Chapter 11-71 gives examples of such programs, outlining their various strengths and weaknesses for assuring dairy cattle welfare. Also described is the need for all standards, including thresholds, targets, or recommended practices, to be science based. The authors argue that because welfare priorities vary among stakeholders, assurance standards should be developed with as many different stakeholders to ensure wide acceptance. A final key component to ensuring animal welfare discussed in this chapter is the need for all humans involved in animal care to be trained and motivated to carry out that task.

Despite best management practices, there are situations where dairy producers have to deal with compromised cattle, that is, those cattle that are in a weakened, debilitated, or non-ambulatory state usually as result of illness or injury. Chapter 11-72 describes the various factors that may lead to cattle becoming compromised, and provides detailed standard operating procedures for dealing with those cattle, including required equipment, training, and documentation.

Stockmanship, or effective cattle handling, is crucial for the health and productivity of dairy cattle as well as
injury prevention. Chapter 11-73 describes how natural behavior of cattle is used to efficiently move and care for animals. Further, the author describes how effective cattle handling may be learned, and highlights the need for proper training on farm to ensure animal care workers have the proper skills and attitude for working with cattle.

Dairy cattle of all ages have the ability to feel pain and experience stress, fear and frustration as well as excitement and pleasure. Chapter 11-74 describes how painful or stressful procedures should only be undertaken when there is an indisputable need and preferably adequate scientific evidence available to support the practice. For those required practices, examples of the least painful method as well as medications to relieve the pain are provided in this chapter. The authors also describe how sustainable practices in animal agriculture must not only avoid negative welfare states, but also aim to promote positive welfare states.

These chapters described above are all focused on describing and addressing issues of dairy cattle welfare, which not only relate to promoting good health and productivity, but also promoting positive affective states, and allowing for natural behavior of cattle. The solutions described for these issues are win-win, that is, they are focused on improving not only the lives of cattle, but also the people who work with them.

It is important to remember that high standards of animal welfare have been, and will continue to be, important to the dairy industry in the future. In the near future, the dairy industry will, no doubt, be asked to provide documented assurance that farms are adhering to specific animal welfare standards. Ensuring animal welfare is not only a concern for dairy producers, but it is an important social concern. As such, as stated by von Keyserlingk and Weary (2016), it can be argued that animal welfare needs to be integrated into our concept of sustainable agriculture (von Keyserlingk et al., 2013), aligning with both environmental (Hötzel, 2014) and economic (von Keyserlingk and Hötzel, 2015) goals. To achieve this, all stakeholders (including consumers of milk products) must be involved in discussions on appropriate animal care. To facilitate these discussions new research has focused on investigating stakeholder views on dairy farming and common industry practices (reviewed by Weary et al., 2016). To ensure the sustainability of the dairy industry, von Keyserlingk and Weary (2016) argue that we need to embrace all stakeholders, as only by understanding the attitudes of people both directly involved and not involved with the dairy industry will we be able to identify contentious topics, as well as areas of agreement. This is important, as industry practices that are in line societal expectations will ensure the long-term sustainability of the dairy industry.

REFERENCES
Section 12: Herd Health

Carlos A. Risco

Optimal animal health is essential for the economic sustainability of a dairy herd. In addition to lowering milk production, poor health increases drug costs, culling, and lowers reproductive efficiency. A well-designed herd health program allows dairy producers to maintain animal health at an optimal level to produce milk at the most efficient level to maximize economic returns. The aim of this section is to provide practitioners and farm advisors information on management practices that have both positive and negative influences on health. Information on the frequency of disease, the biologic effect of disease on productivity, and effective control procedures are presented to allow dairy producers and their consultants to design a herd health program that will enhance animal welfare and the profitable production of milk.

Behavior of transition cows and relationship with health is covered in Chapter 12-75. In this chapter, normal changes in behavior that occur gradually over the transition period and those that change dramatically during the process of parturition are discussed. Changes in behaviors, similar to sickness behaviors, have also been observed to occur well in advance to disease diagnosis, and in some cases before parturition. Assessment and evaluation of these behavioral or "attitude" changes would allow for detecting cows at-risk for illness or those in early stages of disease, allowing for prompt treatment intervention and assessment of treatment efficacy.

Chapter 12-76, on management of transition cows to optimize health and production, discusses opportunities to implement management strategies to mitigate the negative effects on health from physiological changes that occur from late gestation to lactation. A framework is provided to evaluate clinical disease incidence, diet formulation, and stocking density to allow for timely interventions to ensure the dairy is proactively addressing transition cow management opportunities to improve health.

Dairy cattle are at risk to develop metabolic disorders after calving due to the sudden outflow of calcium and energy that occurs at the onset of lactation. These disorders affect the immune status of the cow at a time that she is most vulnerable to develop diseases that lowers milk production and reproductive performance. Chapter 12-77, on minimizing postcalving metabolic disorders, reviews the cause, treatment, and prevention of the 6 most common metabolic disorders of dairy cows: hypocalcemia, hypophosphatemia, hypomagnesemia, ketosis, hypokalemia, and displaced abomasum.

The application of a sound vaccination program can have dramatic effects on the health and profitability of the dairy and needs to be well planned. Chapter 12-78, on immunology and vaccination, covers the essential components of a vaccination program; choosing the appropriate vaccine, when to vaccinate, and the importance of a booster to achieve full protection. Management decisions that may not maximize the potential of the vaccine chosen and realistic expectations from vaccination to protect the herd from infectious diseases are also discussed.

Chapter 12-79 describes management of the herd to minimize lameness. An understanding of lameness conditions, in terms of why they occur and how to prevent them, is an essential component of a herd health program to minimize production losses as well as the loss of cows. Producers need to be aware of the important roles that nutrition and good body condition have in maintaining healthy feet and legs. Facility design and management to maximize cow comfort and reduce time standing are essential to minimizing lameness. The establishment of a foot health program that provides routine claw trimming and correction of claw lesions at an early stage is also critical for the prevention of lameness.

Chapter 12-80 covers paratuberculosis (Johne’s disease) management. Paratuberculosis is a costly disease that is characterized by profuse diarrhea and progressive weight loss. Limitations on the diagnostic tests currently available make it difficult to evaluate the utility of control practices and to estimate the economic impact of paratuberculosis. However, the application of biosecurity and disease control programs can reduce the risk of introducing not only paratuberculosis but other infectious diseases into the herd.

Chapter 12-81 describes parasite control in dairy cattle. The cost of parasitism is related to reduced feed intake and efficiency, which results in poor growth in calves, lower reproductive efficiency, and milk production. Deworming dairy cattle goes beyond treatment of clinical cases and should be aimed first at the prevention or elimination of the parasites. Dairy producers
should work closely with their veterinarians to design an effective control program that best fits their operation and should consider an efficacious product, the correct treatment time in the production cycle of the animal, and strategic deworming practices.

Since the publication of the first revised edition of this book in 1992, major advancements have been made in disease control that have contributed to an increase in milk production per cow worldwide. Nevertheless, to maintain the economic sustainability of dairy farms and meet societal expectations for the care of food-producing animals, there is a need to develop new technologies to improve animal health. Current gaps in knowledge and future needs in health management of dairy cattle include (1) understanding how behavior, during and before illness, can be used as a diagnostic tool; (2) how precision technologies can be used to identify sick cows; (3) the development of housing and management practices that improve animal wellbeing; (4) the genetic basis for disease resistance; (5) development of more effective vaccines; (6) development of alternative for antibiotic use; (7) development of clinical case definitions that affect production and warrant treatment.
Section 13: Business and Economic Analysis and Decision-Making

Albert De Vries

The section on business and economic analysis and decision-making includes chapters on monitoring technical and financial performance, risk management, the economic analysis of a proposed operational change, and the costs of production diseases. Common themes in these chapters are the measuring and understanding of past and current farm performance, and concepts and tools to evaluate proposed changes that result in increased economic well-being. Record analysis, monitoring, benchmarking, and marginality are recurring topics.

Benchmarking is a process to compare the performance of the farm against the farm’s own past performance, against similar farms, or against industry targets. Chapter 13-82 discusses ways that dairy farm managers can use financial benchmarking to identify areas for improvement, set targets for performance, and focus on planning and managing finances. The authors describe the balance sheet and income statement as basic financial statements from which 12 key farm financial performance measures are calculated. These farm financial performance measures, often ratios, can be benchmarked. These measures show the strengths or weaknesses in liquidity, solvency, profitability, and financial efficiency. The authors give numerical examples of financial statements and income statement and lead the reader through the calculation of the example farm’s financial performance measures. They include discussions of the interpretation of the calculated measures. Some of the financial performance measures show the farm’s vulnerability to risk and may motivate action to alleviate poor performance. The chapter concludes with where to find sources of financial benchmark data.

Financial benchmarking provides information about the farm’s financial health that is needed to manage risk. Risk is defined as the uncertainty and volatility in expected returns in the production of an economic good. In Chapter 13-83, the author elaborates on dairy risk management. He describes 5 types of risks and briefly describes tools and ideas to manage those risks. The chapter describes one of those types of risks, price risk, in more detail. Major price risks are evident in the price of milk sold and the price of feeds purchased, especially corn and soybean. A volatility analysis shows that farmers should pay close attention to risk management for both milk prices and feed prices. If left unmanaged, then periods with low returns (low milk prices or high feed prices or both) may lead to financial risk. The author explains how price risk can be managed by forward contracting, hedging, the Livestock Gross Margin Dairy (LGM) insurance program, or by using the Margin Protection Program for Dairy (MPP). The topic of hedging is illustrated with numerical examples of using futures and options. The MPP program is also described more extensively.

Chapter 13-84 discusses the importance of understanding marginality and marginal decision making in a financial context. The chapter starts with the realization that most successful dairy farms compete by being operationally excellent. This includes the early adoption of new technology and production processes, understanding economies of scale, cost control, efficient use of resources, and good decision-making. The chapter centers on the tools, concepts, and assumptions needed when performing an economic analysis of the evaluation of a proposed operational change. One useful tool, the partial budget, is described more extensively. A common mistake made in practice is the use of averages as inputs in a partial budget. In contrast, marginally deals with a clear understanding of costs and revenues that change with the proposed operational change, and those that do not change. Numerical examples are given for the value of marginal (a little more) milk through increased feed consumption, adding cows to the farm, and renovation of freestalls. The examples illustrate the wrong decisions that can be made when benchmark data such as average feed costs are being used. Important is also that volume of milk sold is a main driver of profitability. The chapter gives a hierarchy of profitability of additional milk made on the farm and concludes with suggestions where dairy farmers should look to improve profitability.

One area where the marginality concept of dairy decision-making is also important is in the prevention and treatment of production diseases, as described in Chapter 13-85. The authors make the distinction between failure costs—the costs that result from a production disease—and preventive costs—the costs to prevent the disease from occurring. They give a literature review of the failure costs of mastitis, lameness, and ketosis. Many estimates are available. Failure costs are farm-specific and often underestimated by farmers.
Preventive costs are much less known but can be as large as failure costs. Increases in preventive costs generally reduce failure costs. The marginality principle then says that the optimal level of prevention is at the point where an additional amount of money spent on prevention is equal to the amount of money saved from reduced disease. The authors give a list of steps to take to estimate the optimal level of prevention at the farm level. A partial budget is useful in this analysis.

In this section, several authors have given guidelines about how to improve monitoring and benchmarking on dairy farms. Part of this improvement relates to implementing existing concepts and methods as illustrated in the chapters. Another part relates to better showing the value of monitoring and benchmarking to dairy farmers because this value may be underestimated. Future needs include quantification of the importance of such data collection and analysis. The marginally concept further requires a clear understanding of which costs and revenues change with a proposed operational change. Dairy farmers need to be reminded about this principle because mistakes are commonly made. Another need is quantification of preventive costs of production diseases. Only then can economically optimal levels of prevention be determined such that the total cost of production diseases is minimized.
As owners of large dairies, you determine the course for your dairy, but employees drive it. Good managers see employees as members of their team to move the farm forward. They see employees as an integral part of their farming operation rather than as a cost or a necessary evil. Unless employers can move to this mindset, they will be limited in their labor productivity, efficiency, and quality.

Labor is in a seller’s market as the supply of employees for dairy farms has decreased. Whereas it was once the case that employees were easily replaceable and there was always another body to take the place of one who left, that is no longer the situation in many areas. There are several reasons for this shift: population changes, immigration changes, and changes in what people are willing to do for work.

The current trends portray a future that will make keeping and developing employees more important. Employee turnover is becoming increasingly expensive, and it is getting harder to find good replacements, even as the required skills to use technology on farms increase.

In addition, the productivity of labor is being recognized as one of the greatest differences in the cost of milk production, separating high-profitability farms from lower-profitability farms. For example, at Michigan State University, farm financial data of the dairy farms in the top 25% (sorted by rate of return on investment) showed a 76% higher value of farm production per hour of labor than the farms in the low 25%.

It is not just a matter of productivity; it is a question of the quality of labor and the quality of the care of the animals. Animal care standards are increasing in most areas of the world, as consumers demand that dairy cattle be cared for humanely, with dignity, and with reduced stress. However, when we fail to provide those same measures for employees (humanity, dignity, and reduced stress), they may not, in turn, provide that for the animals in their care.

Human dignity is certainly a greater issue than that of farm animals. Yet, it has not been routinely or evenly applied to dairy employees. Respect for the dignity of individual humans and the meeting of their needs for connection with people and meaningful work is sometimes lost in the drive to produce more, grow bigger, and respond to decreasing profit margins.

That is not true on many farms where employers and managers have made employee management a cornerstone of the business. Those businesses are an example to others. However, where good employee management is not the priority, it has opened the door for worker advocacy movements and regulation.

We believe that all dairy employees, no matter where they are in the world, no matter their ethnic background, economic situation, or personal ability level, are worthy of being treated with respect and that when we do that, the business will grow as a result. That is the common thread that runs through all the chapters in this section.

In his chapter (Chapter 14-86: Leadership for the farm business), Bob Milligan sets the stage with his challenge to employers on what it means to have a healthy organization.

In Melissa O’Rourke’s chapter (Chapter 14-87: Building the team: Continuous recruitment, selection and onboarding), the need for finding and hiring good people and bringing them into the organization effectively has at its heart the need to treat employees with worth as humans.

Compensating employees fairly with a structure that recognizes their need to know what to expect is the foundation of Chapter 14-88: Compensation, bonuses, and benefits: Key start to building a committed, productive workforce by Felix Soriano.

Phil Durst and Stan Moore write of valuing the minds of employees and helping them to apply their minds for the benefit of the business in Chapter 14-89: Building a culture of learning and contribution by employees.

Chapter 14-90 (Setting goals and using performance feedback effectively) by Jorge Estrada tells how to provide what employees need on a regular basis in order to improve their performance and become more valuable to the business.

In Chapter 14-91 (Overcoming challenges and building team cohesion), Barb Dartt presents the case that it is about bringing together a group of diverse individuals into one team while not losing sight of the individuals that make up the team.

In the final chapter of this section (Chapter 14-92: Effective and efficient operations management for farm staff), Kay Carson writes about using the principles
of Lean Management to increase farm profits. In that sense, it pulls together every other chapter, as she writes of employees and management working together to move the business forward.

While good leadership and management of people take an investment of time and resources, it may be the best investment on a dairy farm. In the end, this is about business and the success of that business. However, achieving the highest level of success with cows and budget sheets depends on the success of the people employed.

Owners and managers have the responsibility to engender a workplace environment that is supportive as well as efficient, that is about developing people as much as about developing cattle, and that is about accountability on all levels, more than just about accounting.

The difference between a good dairy farm operation and a great dairy farm operation is the difference in leadership and management of employees. You cannot have a great farm and not be a great leader of people. While you may get by with it for a short period, in the long term, the deficiencies in working with people will limit the ability of the operation to respond to changes and to increase productivity and profitability.

Leadership attitudes and skills for improved management of people can be developed by dairy owners and managers who have the desire, and the humbleness, to learn. We commend you for taking the initiative to do just that with this section on Effective Management of Farm Employees.
Technologies are changing the shape of the dairy industry across the globe. These technologies will continue to change the way that dairy animals are managed. This technological shift provides reasons for optimism for improvements in both cow and farmer well-being moving forward. Precision dairy farming technologies provide tremendous opportunities for improvements in individual animal management on dairy farms (Chapter 15-93). These technologies are changing how dairy producers manage reproduction and health.

Automated estrus detection systems have been developed to help dairy managers identify and inseminate cows in estrus (Chapter 15-94). Most systems use sensors attached to the cow to monitor physical activity alone or in combination with other behavioral or physiological parameters altered during estrus events in cattle. Alerts for estrus are generated based on the relative change of the parameters monitored. In the future, technological advancements and improvements will help refine existing and develop novel methods and devices for automated estrus detection thereby favoring adoption by dairy farms.

Precision dairy technologies can support producers by identifying animals that may require treatment, through exception reporting of deviating health-related parameters based on production, physiology, or cow behavior (Chapter 15-95). The data generalized from these systems can enable early detection of disease and more timely and informed decision making that requires minimal labor. Commercially available monitoring technologies exist for most animal health and wellbeing conditions, yet in almost all situations, issues remain regarding system performance and value to producers. However, technology is advancing at a rapid rate with new sensor measurement techniques being developed and the potential to improve existing technology performance by combining multi-sensor sources and non-sensor data.

Despite advantages that precision dairy technologies can offer, adoption is still limited. This is explained by the lack of information on added economic value when these technologies are used on farm (Chapter 15-96). To determine the economic value of technologies, the straightforward partial budget can be used. This economic tool allows one to estimate extra costs and benefits that result from using a technology. Because technologies concern long-term investments, an investment analysis can be used to retrieve a more precise estimation of the economic value. The driver of farmers investing in precision dairy technologies may not be the economic value, but farmers’ preferences and social impact may be as important as or even more important than potential economic benefits.

Milk weight plus the milk composition data can be used to monitor component production and detect when a ration change may be negatively affecting milk composition (Chapter 15-97). The potential exists to extract more information from mid-infrared spectra of milk for use in management of feed efficiency, health, and reproduction of individual dairy cows. Application of more frequent mid-infrared fatty testing to milk from individual cows, coupled with the fat, protein, lactose, and milk urea nitrogen and milk weight adds value to support precision management decision making.

Although technology provides opportunities to monitor cow health, comfort, and welfare, a producer must still practice good husbandry techniques. These technologies can only enhance a well-managed system, due to the increase in available information. How the data provided by these technologies are turned into actionable solutions is critical. Wearable technologies dominate the market now, and new sensor systems will be introduced into the market in the years to come. These systems will likely transition from primarily wearable technologies to more imaging and milk-based systems. Investment decisions should include a thorough, formal evaluation of profitability. The human factors related to successful technology adoption cannot be overlooked. Excitement about technical capabilities must be balanced with consideration of implementation challenges and economic realities.
This page intentionally left blank
1-dimensional (1D) measure of ground reaction forces, 1287
3D accelerometers, 1288
3-wk submission rate, 525
4-balance system, 1287
4-breed crossbreeding rotation, 375
5-hydroxytryptophan (5-HTP), 836–837
5-Step Animal Welfare Rating program, 998–999
6-wk in-calf rate, 524, 525, 526f
10-point mastitis control plan, 887, 921
21-d pregnancy rate
definition of, 551
as measure of reproductive efficiency, 552, 559, 560f
natural service sires and, 575–576
strategies to increase, 503–504, 511, 517
75-d non-return rate, 504, 504t
313 Standard, 219
3D accelerometers, 1288
1-dimensional (1D) measure of ground reaction forces, 1287
3D accelerometers, 1288
3-wk submission rate, 525
4-balance system, 1287
4-breed crossbreeding rotation, 375
5-hydroxytryptophan (5-HTP), 836–837
5-Step Animal Welfare Rating program, 998–999
6-wk in-calf rate, 524, 525, 526f
10-point mastitis control plan, 887, 921
21-d pregnancy rate
definition of, 551
as measure of reproductive efficiency, 552, 559, 560f
natural service sires and, 575–576
strategies to increase, 503–504, 511, 517
75-d non-return rate, 504, 504t
313 Standard, 219
365-d inter-calving interval, 522

A
A2 β-casein milk, 359, 394
ABCs of resuscitation, 400
abdominal surgery, 1046–1047
abortion. See pregnancy loss absorbes, 1008
absorption, of minerals, 668–669, 669f
accelerometers, 1280, 1281, 1287, 1288
accessory teats, 1043–1044
accounting record-keeping systems, 1132–1133. See also financial performance benchmarks
accrual systems, 1132–1133
accuracy
in genomic selection, 380, 599
in weighing, 282–284, 283, 284t
acetic acid, 639, 641–642, 735t
acetoacetate, urine, 1282
Acetobacter, 733
acetone, urine, 1282
Acholeplasma spp., 890
acid detergent fiber (ADF), 641
acid detergent insoluble N (ADIN), 629
acidified milk feeders, ad libitum, 478–479
acidosis, ruminal. See also subacute ruminal acidosis
acute, 1283–1284
alkali disease, 682
alkaline milk
in milk production, 842, 843f
oxygen and ejection of, 843–844, 844f
stimulation timing, 844–847, 845f, 846f
alkovil
feedback inhibitor of lactation and, 836
in mammary gland development, 816, 822, 824f, 908, 908f
in milk ejection, 831, 842–844, 844f
Amblyomma spp., 1121
American Veterinary Medical Association (AVMA), 1039, 1041, 1043
amino acids. See also protein
balancing, 631, 633–636
in blood circulation, 633
essential, 626, 627t, 633
functions of, 626–627
lactation stage and use of, 633–634
Lys:Met ratio, 704–705
in mammary glands, 633
in microbial protein, 627t, 629–632, 630f
monitoring limiting, 636
most limiting, 635
nonessential, 626, 627t, 633
in prepartum diets, 803
rumen-protected, 635
in the small intestine, 627, 629–631, 630f, 632–633
supplementation by, 440–441, 632, 705, 912
sustainability considerations, 626f
in transition cow nutrition, 703–704
amitraz, 1124
ammonia, 640, 735f
ammonia stripping, 217
ammoniation of by-products, 740
a.m./p.m. rule, 504, 504t
amprolium, 1121
amputation
of claws, 1045–1046, 1048t
of horns, 1040
of teats, 1044–1045, 1048t
amquinate, 1121
AMR (automatic milking rotary), 138–140, 881–884, 883f
AMS. See automatic milking systems
amylose to amylopectic ratio, 644
INDEX

breeding and selecting cows for, 129
concepts in, 878–880
cow traffic in, 129–133, 132f, 133t,
135–138, 880, 884
dual-box, 127–128
economics and labor of, 138
feed center design and, 295
health aspects of, 881
mastitis detection systems and, 1286
in milking parlors, 138–141, 181
multi-box, 128
pasture-based, 130–133
pen size and, 188
popularity of, 867
single-box, 127–128
system capacity and stocking rate,
128–129, 880–881
system designs, 880
take-off levels, 870
autonomy, in farm culture, 1186
average daily growth (ADG), 424, 425f,
432, 438
average daily growth required (ADGr), 432
average feed cost, 1146
average milk flowrate, 855
avermectins, 1122–1123
AVMA (American Veterinary Medical
Association), 1039, 1041, 1043
avoidance distance, 1028–1029

B

BAA (β-adrenergic agonists), 152
Babcock milk fat test, 1305
Babesia bigemina, 1116, 1122
Bacon-Hill Pety Modesty-ET, 333, 333f
bacteria. See also names of specific bac-
teria
enzymes from, in milk, 952
pasteurization and, 308, 449, 461,
955–956
in refrigerated conditions, 952
surviving laboratory pasteurization,
952
Bacteroides spp., 534–535, 536
β-adrenergic agonists (BAA), 152
bag silos, 729t, 730, 731
balance sheets, 1133, 1134t, 1141
barbiturates, in euthanasia, 1012
barrier dips, 903
base salary, 1202–1203, 1202f. See also
compensation
basis, in price risk management, 1143
basis risk, 1144
β-carotene, 585, 690–691, 692f, 694t, 903
β-casein, 359, 394, 836
B cells, 913–914, 914t
B:C ratio (benefit-cost ratio), 1259, 1299
BCS. See body condition scores
bedded pack shelters, 250–251, 251f,
268–270, 269f, 270f
bedding
in bedded pack shelters, 250–251, 251f,
268–270, 269f, 270f
in cold weather, 451
costs of, 460
delivery systems, 134
in freestalls, 80, 247–248, 248f, 1098
lameness and, 1098
manure system design and, 188–189, 189f
mastitis and, 885, 899–902, 900f, 1060
mattresses, 1098
in mature cow freestalls, 247–248
in milking centers, 188–189, 189f
in organic dairy production, 122–123
organic material, 212, 900–901, 900f
sand, 191, 212, 213, 901, 1010, 1098
sawdust, 900–901, 900f
in special needs pens, 1010
beef production from dairy herd, 143–161
antimicrobial resistance in, 955
beef quality, 147
cross-breeding cows with native cattle,
144
cross-breeding cows with native cattle,
144
feed additives and anabolic agents,
151–152
feeding strategies, 144, 147–151, 148t,
149f, 149f
feed intake and health, 1055
finishing, 152–153, 154f, 155f, 155t
in the future, 160–161
history, 146
housing, 144, 150, 153, 156f, 157f
Jersey cattle, 144, 147
niche markets, 153
pricing structure, 156–159, 158t
risk management, 159–160
sexed semen in, 146–147
significance, 144–146, 145f
terminology, 143
veal production, 145
behavioral development, 423, 426–428,
436–437
behavioral indicators of disease
behavioral monitoring, 1059–1060
in dystocia, 1061, 1281
early indicators, 1060–1063
in hypocalcemia (milk fever), 1007,
1059, 1061
in ketosis, 1058–1059, 1061
in lameness, 1058, 1059, 1061
in mastitis, 162–163, 1058, 1061
in pneumonia, 1059
response to pain, 1005–1006
in retained placenta, 1059
behavior of transition cows, 1055–1063
behavioral analysis, 1287
disease prevalence in, 1055–1056, 1056t
early indicators of disease, 1060–1063
electronic feed monitoring of, 1055–1056
increasing disease trends in, 1055
from latent gestation to early lactation,
1057–1058
normal maternal behavior, 1056–1057,
1057t
sickness behavior, 1058–1060, 1060f
social behavior, 1061–1062
belly bands, 1010, 1011f
benchmarks. See financial performance
benchmarks
benefit-cost ratio (B:C ratio), 1259, 1299
benefits package, 1206–1208
benzimidazoles, 1122, 1123–1124
best management practices (BMP)
for antibiotic usage, 936–942
for manure management, 34–36, 35f,
1109
for semen storage, 572–573
for water quality, 34–36
betaine, heat stress and, 594
BHV-1/BHV-2 (bovine herpesvirus 1 and
2), 342–343, 452, 1089
β-hydroxybutyrate (BHB)
in ketosis, 1059, 1081, 1282–1283
as marker of net energy balance, 800,
1068–1069
monitoring of, 1281–1282, 1307
uterine health and, 537
bias, in data, 550
biodehydrogenation theory, 659–660, 659f,
662
biological value of proteins, 8
biosecurity, 94–95, 261, 264
biosensors, 1252. See also precision dairy
monitoring
biodiversity, 594–595, 594t, 707, 1096–1097
bird control, 290–291
β-lactam residues, 953–954
BLAD (bovine leukocyte adhesion defi-
ciency), 337–338, 363
blind spot, in cows, 1031
blind stags, 682
blood histamine, 1095
blood meal, 635, 742t, 743, 743f
blood pH
hypocalcemia and, 1079–1080
macromineral interactions and, 670–672
magnesium and, 676–677
BLV (bovine leukemia virus), 345
BMR (brown midrib) trait, 641
body condition scores (BCS)
animal welfare assurance programs on,
998, 998t
in beef cattle, 154f, 155f
energy balance and, 800–801
fertility and, 496, 528–529, 801
in genetic selection, 350, 361
in herd-based monitoring, 779–780
INDEX

Brown Swiss cattle
breed characteristics, 371, 372f, 372t
in crossbreeding, 372–374, 372t, 373t
finished, in beef production, 152–153, 154f, 155t
BRSV (bovine viral syncytial virus), 452, 1089
bucket-feeding, 476
bucket loaders, in moving down cows, 1009, 1090, 1016
bud box, 236, 1035, 1035f, 1035v
buffalo, milk supply from, 4, 5f, 7
buffer strips, 35, 36
bulk tank
culturing, 861
infrared testing of, 1307, 1310–1312, 1310f, 1314
in mastitis testing, 889–890, 903–904, 951, 1218, 1258
somatic cell count (bulk tank SCC), 889, 951
bullet selection, 1012, 1022f
bulls. See also artificial insemination; semen; sire selection
castration, 1041–1043, 1048f
heat stress and, 581–582
service sire fertility summary, 570–571
sire conception rate, 570–571, 571t
bundling, 1009, 1010f
bunker silos, 291–292
buquiolate, 1121
burial of carcasses, 1013
butter and butterfat markets, 316f, 326–328, 326t, 327t, 328t
butyric acid in silage, 642, 735–736, 735t, 1082
BVDV (bovine viral diarrhea virus), 342, 403, 452, 1089
byproducts and co-products
antinutritional factors in, 746, 748
as carbohydrate source, 739–741, 740t, 741t
definition of, 739
ecematics of feeding, 748
ensilage of, 744, 745f
as feed during lactation stages, 744
as lipid source, 741, 741t
mineral composition of, 746
as protein source, 741–744, 742t, 743f
sources of variation in, 716–718, 716f, 717t, 718f
treating for digestibility, 740–741
variability of, 744, 747, 747f
water content of, 744

C

cadmium (Cd), 684–685
caesarian section, 1047, 1048f

CAFOs (concentrated animal feeding operations), 34–36, 35f
calcium (Ca). See also hypocalcemia (milk fever)
blood pH and, 670–672
calcium therapy in mastitis, 1008
DCAD and, 803
from diet, 668t, 669t, 670t, 671t
functions of, 763
homeostasis, 671–672, 673, 803–804
in hoof health, 1096
in lactation, 671t, 672, 673, 803–804
normal blood concentrations, 1077–1078
serotonin and, 837
supplementation, 1079–1080
in transition cows, 706, 1067
calcium propionate, 1079–1080
calf and heifer disease prevention, 445–454
diarrhea, 445–451, 447f, 448f, 461–466, 465f
disease incidence, 445, 446f
record keeping, 453
sick calf management, 453–454
stress avoidance, 453
calf and heifer facilities, 255–277, 475–482. See also group housing of calves
bedded transition calf building, 268–270, 269f, 270f
biosecurity, 261, 264
calf buildings with individual pens, 266–267, 267f
calf hutches, 264–265, 264f
calf kennels, 265, 265f
calf pens, 260, 261
combination bedded pen and freestall buildings, 272, 275f
disease prevention and, 447–448, 448f
environmental considerations, 257
facility sizing, 257, 257t
feeding areas for, 260–261, 260t, 262f, 263f
gated bedded pen heifer buildings, 271, 272f
gated freestall heifer buildings, 271–272, 273f, 274f, 275f
gated self-cleaning heifer buildings, 272, 274, 276f, 277
group housing, 476–482
heifer facility options, 270–277
housing management plan, 175, 446–447
individual housing systems, 475–476
management groups for, 255–257, 256f
in organic dairies, 122
resting area requirements, 259–260
social behavior and, 427–428
support facilities, 277
transition calf facility options, 268–270, 268f, 269f, 270f
ventilation of, 258–259, 451, 476
calf transition, 421–428. See also calf and heifer facilities; calves; preweaned calf nutrition; weaning calves
behavioral development, 423, 426–427
facility options, 268–270, 268f, 269f, 270f
housing and social behavior, 427–428
importance of diet in first 2 months, 421–422, 422f
management groups, 255–256
milk and solid feed interactions, 427
milk replacement, 423
particle size of TMR, 427
solid feed intake, 423–424, 425f
starter feed, 424–427, 426f, 459
California
air quality regulations for silage, 48
milk production, 47, 309–310, 309f, 311f, 312f
silage production in, 49–50, 50f
California Mastitis Test (CMT), 928, 945, 1286
calf options, 1144
calves. See also calf and heifer disease prevention; calf transition; calves, newborn and preweaned; economic modeling of raising strategies; preweaned calf nutrition
animal welfare programs, 995–996, 997
automatic feeders for, 1289
behavioral development, 423, 426–428, 436–437
calf value, 561
in dairy beef production, 147–150
dehorning, 123, 1039–1041, 1048f, 1049
developmental abnormalities in, 603, 604f
diet of, 397, 421–422, 422f
digestive development, 422–423
excess replacement calves, 561
free water intake, 614
growth monitoring, 256–257, 464f
heat stress in, 414, 449
housing system management plan, 175, 446–447
large-calf syndrome, 603, 604f
management groups, 255–256
maternal obesity and, 594
in organic dairy production, 121–123
parasite control for, 1125–1126, 1126t
in replacement facilities, 256, 258–261, 259t
sick calf management, 453–454
social housing, 427–428, 477
in utero heat stress effects on, 593, 594, 595f
waste milk for, 410f, 412, 413, 448, 458–459, 461
wet calf value, 458, 466, 467t, 469–470, 471f, 472, 472f
calves, newborn and preweaned. See also calf transition; preweaned calf nutrition; weaning calves
colostrum management, 404–405, 409–417
cow-calf separation, 402
disease testing, 403
drying and worming, 403
feeding systems, 476, 477
identification and records, 402
lactocline hypothesis, 410
maintenance requirements, 413–414
minerals and vitamins, 403–404, 415, 415f
pain management in, 400, 402
resuscitation and critical care, 400
umbilical care, 402–403
vigor assessment, 399–400, 401f
water for, 413, 415
calving
colostrum, 75
diarrhea prevention, 446–447, 447f, 461–466, 465t
feed intake near, 700–701
genetic selection to improve, 360
just-in-time pen management, 225, 226f
maternity manager, 75, 224
in pastured systems, 101–102, 101f, 923
precision monitoring for diseases in, 1280–1281
socially stable group pen management, 226, 227f
vitamin A and, 692f
calving interval (CI), 350–351, 552
calving paralysis, 1007–1008, 1008f
camels, milk supply from, 4, 5f
Campylobacter jejuni, 957
Canada
animal welfare programs in, 993, 994, 996–997, 1000
drinking water standards in, 616f
health data, 347
as milk exporter, 313f
as milk importer, 314
captive bolt stunning, 1011–1012, 1022f
carbohydrates, 639–653
by-products and co-products, 739–741, 740t, 741t
in Energy Metabolism Database, 647, 649
fermentability of, in feed, 631, 662–663
forage quality, 646–649, 646t, 647t, 648f, 648t, 649f, 650f
functions of, 639–640, 640f
hoof health and, 1095
in lactation, 702, 804
major types of, 641
neutral detergent fiber digestibility, 642–643, 643f, 643t
nonstructural, 741, 741t
rumen microbial metabolism of, 639–640, 640f
rumen microbial production of, 631
ruminal acidosis and, 399–400, 424, 649, 650–652, 651f, 651t
starch, 643–645, 644f, 644f, 645f, 645t
sugars, 641, 645–646
in transition cow nutrition, 702–703
volatile fatty acids, 641–642
water-soluble, 48, 108
carbon balance, 26
carbon dioxide, 14, 20–21, 50. See also carbon footprint of milk production
carbon footprint of milk production allocation decisions in, 25–26, 27
calculations of, 14–15, 15t
carbon balance and, 26
carbon sequestration and, 26
components of, 21–26, 22t, 24t
dairy cattle greenhouse gas emissions, 14–15, 15t
carbon footprint of milk production
allocation decisions in, 25–26, 27
integrations of, 14–15, 15t
integrated Farm System Model, 26–30, 30f
life cycle assessment in, 19–20, 20f
management and, 28–30, 28t, 30f
national assessment of, 27, 28t
nitrogen balance, 195–197, 196f, 197f, 206
tools for assessing, 26–27, 29–30, 30f
carbon sequestration, 26
carcass disposal, 1013, 1022f
casein and caseinates, 316f, 350, 394
cash accounting systems, 1132–1133
cash flow statements, 1141
castration, 1041–1043, 1048t
catecholamine, from stress, 1027
cation exchange, in water treatment, 620
cattle grubs, 1120, 1124
cautic paste, in dehorning or debudding, 1040
CCR (cow conception rate), 349, 503, 569, 570
CDCB (Council on Dairy Cattle Breeding), 334, 335–336, 570–571
celtoflox/ceftiofur, 39–40, 541, 938, 939t, 940, 953
ceiling price, 1144
cell grazing, 118, 119, 120f
cell proliferation-apoptosis balance, 834–835
cellulose, 641
INDEX

in transition cow nutrition, 706, 1071, 1078–1079
diet-induced milk fat depression. See milk fat depression
0
0

for hypophosphatemia, 1080

internally consistent definitions of diseases, 1069

for ketosis, 1081–1082

for mastitis, 903–904

medication in automated feeders, 482

nutrition and, 448–449, 461–462, 529

optimizing preventive costs, 1170–1174, 1170f, 1171f, 1172f

postcalving measures, 1077–1083

preventive costs, 1170–1174, 1170f, 1171f, 1172f

record keeping, 346–347, 453, 454t, 557–558, 1068–1069

for respiratory disease, 451–453

rumination monitoring, 1073

screening tools, 452–453

degregating infected cows during milking, 859, 861

sick calf management, 449, 453–454

stress avoidance, 453

for uterine diseases, 538–539, 540t

vaccination, 116, 120, 150, 449–450, 452, 465t, 466

ventilation, 451

diseases. See also behavioral indicators of disease; disease prevention and control; economic impacts of disease; vaccines; names of specific diseases

biosecurity, 94–95

bovine viral diarrhea virus, 342, 403, 452, 1089
calf housing and, 257, 446–447, 447f

field data on resistance to pathogens, 345–347

inherited defects in, 363–364

inframammary infections, 121

newborn testing for, 403

organic dairy production and, 116, 120–121

record keeping, 346–347, 453, 454t, 557–558, 1068–1069

relationships between postcalving disorders, 1083, 1083f

use of genetic data, 347–349, 348t

displaced abomasum

economic impact of, 358, 1070, 1169

in high-producing cows, 358

ketosis and, 343–344

nutrition and, 802

overview, 1082, 1083f

precision monitoring for, 1281–1282

prevalence of, 1056f

prevention of, 1082–1083

surgery for, 1046–1047, 1048t

dissolved air flotation (DAF), 217
distance from neighbors, 96–97
distillers grains with soluble (DGS), 742–743, 745f, 746, 747f
distributing plants, federal marketing orders and, 320
INDEX

1323
disturbed milk ejection, 848–849
DMI. See dry matter intake
docosahexaenoic acid (DHA), 659, 805, 806
do not breed (DNB) codes, 555–556
doramectin, 1123, 1123f
Double-Ovsynch protocol (DOS), 508–510, 510f, 542, 551–552
double ovulation, 495, 495f
down cows. See non-ambulatory cattle
downer cow syndrome, hypophosphatemic, 674
DPL (dry period length), 833–834
drinking water, 611–621
dehydration, 942, 1006, 1015, 1018f
drinking water standards, 33, 614, 616f, 617–618, 618f
free water intake, 612–614, 613f, 614t
functions of, in cows, 611–613
groundwater for, 612, 612f
iron in, 618–619
for mature cows, 143–144
microbes and, 619–620
minerals in, 615–616, 617, 617f
nitrate in, 619, 619f
quality of, 614, 615f
for replacement calves heifers, 261
speciation in, 614–615
stray voltage in delivery systems, 620
sulfate in, 618
total dissolved solids and salinity, 617–618f
for transition cows, 232, 1058–1060
treatment methods, 620
drive-around housing modules, 250
drive-by housing modules, 249
drover/stall groomer, 75–76
DRPC (dairy records processing centers), 334
drug usage. See also names of specific drugs
criteria for justifiable antibiotic use, 939f, 940–942, 941f
extra-label, 937–938, 942, 1041
nonpermitted drugs, 938
over-the-counter drugs, 936–937
prescription drugs, 937
dry cows
dry cow therapy for mastitis, 40, 903, 945–947, 946f
dry period length and milk production, 833–834
free water intake, 613t, 614
photoperiod regulation in, 832
quadrant analysis, 987–988, 987f, 987t, 988f, 990t
teat seals for, 927–928
dry cow therapy (DCT), 40, 903, 945–947, 946f
dry fat supplements, 657t, 658–659
drying off, monitoring of, 1289
drylot (DL) dairies. See also hot climates
housing, 87–89, 88f, 88t, 89t
site plan example, 181–182, 181f
space requirements, 252–253, 252f
dry matter intake (DMI). See also feed;
functions of, in cows, 611–613
free water intake, 613
drinking water standards, 33, 614, 615f
of transition cows, 700–701
dry period length (DPL), 833–834
duplicate event gap, 986
dystocia
behavior of cows with, 1281
calf supportive care, 399, 400, 402–403
heifer weight and, 472
hypocalcemia and, 1007
incidence of, 1280
metritis and, 539
precision monitoring of, 1281
records on, 453
standing and lying behavior in, 1061
economic modeling of raising strategies, 462–470
net results of, 470–472, 471f, 472f
parameters in, 462–463
Stage 1, 463–466, 464t, 465t, 467t
Stage 2, 466, 467t
Stage 3, 465t, 466–468, 467t
Stage 4, 467t, 468–469
Stage 5, 464f, 467t, 469
Stage 6, 467t, 469–470, 471f, 472f
economies. See also economic impacts of disease; economic modeling of raising strategies; financial performance benchmarks; global dairy markets; milk markets and marketing
of by-product and co-product feeding, 748
cow value, 562–563
of depreciation, 460
economic modeling, 462–470, 558–563, 560f
of embryo transfer, 602–603
genotyping, 380–381, 383–385, 384f
of heat stress, 596
of housing, 459–460, 466, 471f
of intensive feeding, 461–472, 464f, 467t, 471f, 472t
of labor, 459, 465
of lameness, 1094
of manure recovery, 218–219, 218f, 219f
of mastitis treatment, 944–945
milk income over feed cost, 559–561, 748, 1142, 1155, 1160, 1162
of milk production, 100, 100f, 138
of nutrient variation, 718–720, 719f
overall economic value of reproductive performance, 559, 560f
of PDM technologies, 1294–1300
of raising replacement heifers, 457–472, 561 (see also economic modeling of raising strategies)
replacement and mortality costs, 561–562
reproductive management costs, 562 of transition cow diseases, 1069–1070
wet calf value, 458, 466, 467t, 469–472, 471f, 472f, 561
E
E2. See estradiol
E/A (equity to asset ratio), 1136
early embryonic loss, 556–557
ear tags, 1043
earthquake zones, 96
ECM (energy-corrected milk), 299
E. coli. See Escherichia coli
economic decision making. See financial decision making
economic impacts of disease, 1165–1174
application to specific farm situations, 1171
of arachnid parasites, 1121
costs of transmission risk, 1168
in different milk payment systems, 1169
factors in costs of disease, 1166, 1167f
farmers’ estimation of failure costs, 1169–1170
IMPRO model, 1173–1174
of Johne’s disease, 1108
of ketosis, 1168–1169
of lameness, 1168
of mastitis, 944–945, 1167–1168, 1170f
pathways of, 1165–1166, 1166f
preventive costs, 1170–1174, 1170f, 1171f, 1172f
technical efficiency in, 1171–1172
edema, teat, 856
EEG (electroencephalogram) to monitor sleep, 1253f
effective fiber, 740
effluent management, 105–106
egg collection methods, 393, 584–585, 584t, 602
eicosapentaenoic acid (EPA), 659, 805, 806
Eimeria spp., 1116, 1121–1122
elective procedures
INDEX

employee engagement, 1215–1218, 1218f

encouraging employee input, 1215–1218

housing benefits, 1208, 1209f

labor efficiency management plan, 175–176, 176f

manager positions, 73–76, 85, 224, 229

pay increases and promotions, 1229

performance evaluations, 1190–1191, 1228–1229

performance feedback, 1225–1228, 1228f

professional and personal advancement, 1208, 1223

recognition, 1225–1226

redirection, 1226

reprimands, 1226–1227

scheduling, 73

SMART goals, 1223–1225

standard operating procedures, 73

supervisor–employee relationship, 1221–1222

training programs, 1213–1215

employee positions

drover/stall groomer, 75–76

farm manager, 73–74, 878, 879f, 934

herd manager, 74–75, 224, 229

herdsman, 224

lead milking employee, 75

manure/bedding manager, 75

maternity manager, 75, 224

milking manager, 75

“veterinarian managers,” 85

employee redirection, 1226

employees. See also recruitment and hiring; training programs

automated calf feeders and, 479

costs of, 459, 465, 471f, 1260–1261

effects of euthanasia on, 1014

employee handbook and policy documents, 1198–1199

job analysis by, 1191–1192

job descriptions, 1190–1193, 1194

job mentors for, 1198

language differences and idea sharing, 1218, 1218f

in milking systems, 875, 882, 884

positive animal handling by, 1001–1002, 1001f, 1028–1029, 1198

roles in mastitis detection, 928, 934–936, 935f, 935t, 936t, 937t

turnover of, 1189–1190

EMU (Energy Metabolism Unit) database of USDA-ARS, 647, 649

energy needs

in calf transition, 423, 425

carbohydrates and, 639–642, 645–649, 651–652

in close-up cows, 1071

colostrum and, 410–411, 410f

in feedlot finishing, 148

of heifers, 431, 436–439, 439f, 441, 463, 466, 470

of high-producing cows, 358

lipids and fats and, 655–664

negative energy balance, 521–522, 528, 800–802, 1068, 1282–1283

in newborn calves, 403

post-weaning, 144, 150–151, 152

pre-weaning, 409–414, 410f

protein and, 631, 633, 634–635

Enterobacter aerogenes, 343

tenterobacteria, in silage fermentation, 725

Enterococcus faecium, 708, 731

Envipac J-5 coliform vaccine, 915–916

Environmental Protection Agency, US (EPA), 33, 36–37, 52–53

clinical, 541

diagnosis and treatment of, 542–543

epidemiology of, 538–539

immune dysregulation in, 1073

postpartum incidence of, 533

PVD and, 541

in seasonally calving herds, 528

endothelial cells, 913

Endovac-Bovi coliform vaccine, 916

energetic efficiency, 62

energy-corrected milk (ECM), 299

Energy Metabolism Unit (EMU) database of USDA-ARS, 647, 649

energy needs

in calf transition, 423, 425

carbohydrates and, 639–642, 645–649, 651–652

in close-up cows, 1071

colostrum and, 410–411, 410f

in feedlot finishing, 148

of heifers, 431, 436–439, 439f, 441, 463, 466, 470

of high-producing cows, 358

lipids and fats and, 655–664

negative energy balance, 521–522, 528, 800–802, 1068, 1282–1283

in newborn calves, 403

post-weaning, 144, 150–151, 152

pre-weaning, 409–414, 410f

protein and, 631, 633, 634–635

Enterobacter aerogenes, 343

enterobacteria, in silage fermentation, 725

Enterococcus faecium, 708, 731

tenrapment, 1015–1016, 1025f

Enviracor J-5 coliform vaccine, 915–916

environmental considerations. See also carbon footprint of milk production

access to natural elements by animals, 999–1000

for calves and heifers, 257, 403, 412, 438, 449, 477

costs of, 461

in disease prevention and control, 449, 451

in feed and manure management plans, 175, 211, 219

gen genes versus environment, 331–332, 331f

for newborn calves, 403, 412

precision monitoring and, 1256

rodent and bird control, 290–291

silage air emissions, 47–48, 52–54, 54f, 737

silage leachate control and disposal, 290, 725

tire and plastic waste, 290

urea production and disposal, 634

wildlife reservoirs for Johne’s disease, 1107–1108
INDEX

system components in, 170–171, 170f, 171f
traffic patterns in, 189–190
transition cow housing management plan, 174, 237–238, 237f
farm track construction, 104f, 105, 105f, 106f
Fasciola hepatica, 1119–1120, 1119f
Fascioloides magna, 1119–1120, 1119f
fast food restaurants, animal welfare and, 998
fat and lipid nutrition, 655–665
fat/skim FMMO pricing, 325, 326
fat-induced milk fat depression and, 660, 660t, 662–664, 663f, 783, 1311–1312
essential fatty acid requirement, 661, 808
fat digestion and metabolism, 659–662, 659f, 660t
fat supplementation, 655–656, 661–664, 805–808, 807f
fatty acid functions, 655
feeding strategies, 662–664, 664f, 665, 808
hoof health and, 1095–1096
in lactation, 805
lipid classification and analysis, 656–657, 656f
liquid fat by-products, 657f, 658
pregnancy improvements from, 806–808, 807f
sources of dietary fat, 657–659, 657f
supplementation, 655–656, 661–664, 705, 805–808, 807f
in transition cows, 705
fat- and protein-corrected milk (FPCM), 26
fat cow syndrome, 744
fat/skim FMMO pricing, 325, 326f
fatty acids
absorption and utilization of, 660–661
in bulk tank milk, 1310–1311, 1310f, 1314
de novo, 1307–1309, 1309f, 1309f
DHA, 659, 805, 806
digestibility of, 660
energy intake and, 661–662
EPA, 659, 805, 806
essential and conditionally essential, 661, 808
functions of, 655
 genetic effects on profiles, 657
in lactation, 805
long chain, 805
modeling, 1307
nomenclature of, 656t
nonesterified (see nonesterified fatty acids)
polyunsaturated, 662, 741, 779, 783, 805–807, 913, 1095
preformed, 1307, 1309, 1309f, 1311–1312
prilled, 658–659
rancidity of, 659
requirements for, 661
ruminal metabolism of, 659–660, 659f, 660t
saturated, 655, 658–659, 662, 1307
supplementation of, 655–656, 661–664
trans, 655, 656, 659, 661, 1312
unsaturated (see unsaturated fatty acids)
fatty liver, 696, 707, 802, 1081
FAWC (Farm Animal Welfare Council), 998
FDA. See Food and Drug Administration health and fear memories, 1027
fecal coliforms, 215, 925
fatigue, 1027
See also nonesterified fatty acids
unsaturated (
unsaturated fatty acids)
feedback inhibitor of lactation (FIL), 835–836
feed barrier design, 247, 792, 795–796
feed bunk management, 437, 764–768, 796
feed center design and management, 279–296
automated milking systems and, 295
building details, 286–289, 287f, 288f, 289f
by-products, 292
commodity sheds/bays, 287–288, 288f
environmental considerations, 289–291, 295
facility effect on storage losses, 282, 282f
feed barrier design, 247, 792, 795–796
feed bunk, 764–768, 794, 796
goals in, 279–280
horizontal versus tower silos, 289
labor management, 289
location on farmstead, 284
material flow in, 280–281, 280f, 281f
milk production increases and, 295
mixers, 285, 288–289, 292–296, 293f, 294f
mobile feeding, 284
moisture and losses, 282, 282f, 292
overcrowding and, 794–795
portable mixer feed center design, 285, 285f, 288f
safety, 295
scale errors and losses, 282–284, 283f, 284f
silage storage, 51, 55–56, 289, 291–292
site plan details, 285–286
stationary mixer feed center design, 285, 286f, 288–289, 289f
storage loss management, 281–282, 281f, 287
traffic flow and control, 284
feed efficiency, 61–67. See also TMR variation control
in automated feeders, 480
crossbreeding and, 375
definition of, 62
diet effects on, 62f, 63–64
dilution of maintenance, 62–63
factors in, 61, 62f
feed sorting and, 423, 427, 790
in first 2 months of life, 422
forage digestibility and, 648–649, 648f, 649f
income over feed costs, 559–562, 748, 1142, 1155, 1160, 1162
managing for, 65–66, 66f
milk yield and, 61–67, 62f, 64f, 65f, 66f, 790, 793–794
profitability and, 66–67
refusal amounts, 12–13, 13f, 788, 793
selecting directly for, 64–65, 65f, 338
temperature and, 72, 73f
INDEX

variation among cows, 64
Feed First systems, 880
feeding behavior
competition in, 428, 437–438, 475, 478, 790, 794
eyard indicators in, 1060–1061
before giving birth, 1056–1057, 1057f
ketosis and, 1283
in sick transition cows, 1058–1060
feeding management
access time and amounts, 792–794
in automatic milking systems, 129–130
calf schedule, 481, 482
delivery timing, 764, 788–791, 788f, 789f
disease and, 802
energy balance and reproduction, 800–802
in farmstead design, 174
feed bunk competition, 428, 437–438, 475, 478, 790, 794
feed bunk management, 764–768, 796
feed cost per cow, 1157, 1159
feed cost per liter of milk, 1157–1159, 1159f
feeding frequency, 788, 788f, 790–791, 791f
feed sorting by cows, 423, 427, 790
feed tossing, 796
feed variability and, 718–722, 719f, 720f, 721f (see also TMR variation control)
fertility depression from, 808–809
financial evaluation of, 1157–1160, 1159f
food distribution systems, 244, 245f
free traffic, 129
guided traffic, 129–130, 131–133, 132f, 133f
Intensive feeding program, 461–472, 464f, 467f, 471f, 472f
John’s disease and, 1109
for lactating cows, 766–767
leftover feed, 12–13, 13f, 768, 793
mob feeders, 478
negative energy balance and fertility, 800–802
overcrowding, 794–795
prepartum energy, 802
programmed feeding, 150–151
push-up timing and frequency, 768, 792, 793f
for replacement calves and heifers, 260–261, 262f, 263f, 476–768
software programs, 768
time-lapse video of feeding behavior
and access, 767–768
TMR feeder safety, 751–752
for transition cows, 231
feed managers, 74–75
feed-out phase of silage, 50f, 51–52
feed sorting, 423, 427, 790
feed storage management plan, 174–175
feed variability, 713–722. See also TMR variation control
in by-product feeds, 744, 746, 747f
economics of, 718–720, 719f
in grinds, oilseeds, and byproducts, 716–817, 716f, 717f, 718f
intrinsic and extrinsic components, 713
long-term variations in forages, 716, 716f
managing, 721–722, 746
measures of variation, 713–714, 715f
monitoring, 746
response of lactating cows to, 720–721, 720f, 720f
short-term variations in forages, 714–716, 715f
in total mixed rations, 718, 718f
fencing, 104–105
ferritin, 678–679
fertility. See also reproductive management programs
of AI sires, 569–571, 570f
body condition and, 496, 528–529, 801
calcium homeostasis and, 803–804
valing interval, 350–351
combined PGF2α and GnRH or presynchronization, 507–510, 510f
crossbreeding for, 372–373, 373f, 374f
cystic ovaries and, 350, 352
disease prevention and, 802
energy balance and, 800–802
extension of lactation and, 529
factors in, 349–350
feed and depression of, 800–802, 808–809
first calving age, 398
genetic selection for, 350–353, 360, 381
heat stress and, 582–584, 582f, 582f, 583f, 586–587
ketosis and, 801
lactating cow nutrition and, 804–808, 807f
longevity and, 352–353
management-cycle approach to, 523–525, 524f
metritis and, 351, 358, 537
milk production and, 349
prepartum diet and, 802–803
progesterone and, 515
reduced milking frequency and, 529
Resynch protocol, 505, 511, 514–515
retained placenta and, 351–352, 537–539
software for, 507, 509f
type trait selection and, 352
uterine disease and, 537–538
fertility and herd environment-management (HEM), 569, 570f
Fertility Focus report, 525, 526f
fertilizers, 24–25, 196f, 197, 212
fetching cows, in AMS, 134–135, 136
fetotomy, 1047
fiber. See also neutral detergent fiber
acid detergent fiber, 641
from by-products and co-products, 739–741, 740f
digestibility, 646f, 647–652, 647f, 648f, 648f, 649f, 650f, 651f, 651f, 652
effective, 740
hoof health and, 1095
for lactating cows, 646, 647–652, 647f, 648f, 648f, 649f, 650f, 651f, 651f, 652
supplements, 742
fibroblast growth factor (FGF), 23, 803, 821
field of vision in cows, 1030
flight-or-flight response, 1027
final not-in-calf rate, 524–525
financial decision making, 1149–1163
break even analysis, 1152, 1160, 1161f
decision analysis, 1153
economics of scale, 1149–1150, 1150f, 1163
expected value of decision, 1153
farm profit, 1155–1157, 1156f, 1158f
feeding program evaluation, 1157–1160, 1159f
freestall renovation example, 1160–1162, 1161f
investment analysis, 1298–1300, 1299f
marginality, 1153–1155, 1154f
maximizing profit per “slot,” 1162–1163
operational excellence, 1150–1151
partial budgets, 1151–1153, 1159, 1160, 1161f, 1297–1298, 1298f
precision monitoring systems and, 1280
sensitivity analysis, 1152, 1162, 1297
simulation modeling, 1300
financial efficiency, 1134, 1137–1138, 1138f, 1141
financial performance benchmarks, 1131–1140
accounting record-keeping systems, 1132–1133
benchmarking definition, 1129, 1132, 1138–1139
benchmarking information, 1139
financial efficiency, 1135f, 1137–1138, 1138f, 1141
financial ratios, 1134–1136, 1135f
financial statements, 1133–1134, 1134t, 1135t
liquidity, 1135t, 1136, 1141
other considerations, 1138
profitability, 1135t, 1137, 1141
setting benchmarks, 1138–1139
solvency, 1135t, 1136, 1141
usefulness of, 1131–1132
financial ratios, 1134–1136, 1135t

Page 1327
INDEX

financial statements, 1133–1134, 1134f, 1135f
Finland, 347
firearms, in euthanasia, 1011, 1012, 1022f
first follicular wave, 490–491, 496
fish meal, 682, 805
fish oil supplements, 662, 805
fitness for transport, 1006, 1015
Five Freedoms of the Farm Animal Welfare Council (FAWC), 998
five-point mastitis control plan, 887, 921
fixed costs, 314
flaxseeds, 806
flies
control of, 796, 888, 928, 1039
as parasite species, 1120–1121
flight zone in cows, 1031–1032, 1032
flocculation, in manure treatment, 217
flooring
automated estrus detection systems and, 1269–1270
concrete versus rubber, 1098–1099
feed bunks, 796
holding pens, 874
lameness and, 1098
mattresses, 1098
silos, 291
stalls, 1097–1098
floor price, 1144
flow-controlled milking, 870
Fluid Merit (FMs), 335f, 336, 362
flavin mononucleotide, 1041, 1043
fluorine (F), 685
FMMO. See Federal Milk Marketing Order
follicle ablation, 586
follicle-stimulating hormone (FSH)
for embryo transfer, 584–585, 602, 604
in estrous cycle, 492, 493, 496, 500f
follicular atresia, 493
follicular turnover treatment, 586–587
follicular waves, 490–491, 490f, 492f, 496
Food and Drug Administration (FDA)
on antibiotic use, 38, 40–41, 936, 940
on BAA technology, 152
on drug residues, 953–955
on EDDI in feed, 680
on pasteurization, 949, 956
on selenium, 682–683
on sulfonamides, 938
on veterinarian involvement, 936
foodborne pathogens in milk, 955–957
food loss, 12–13, 13f
food safety, production practices and, 72
food waste, 12–13, 13f, 768, 793
foot-and-mouth disease, 95, 342–343, 344–345
foot-bathing, 134, 135f, 1099–1100
foot rot, 1014, 1058, 1168
foot trimming, 1100
forage restrictor settings, 762–764, 766f, 766v, 767f
fores, 85–86
alfalfa hay, 647, 648t
in the bunk only, 129
in calf transition, 425–426, 426t
chop length for silage, 726
costs of, 459
digestibility of, 646–649, 646t, 647t, 648f, 648t, 649f, 650f
fatty acids in, 657, 657f
folic application of nutrients, 652
grasses, 648
protein digestibility and, 635
quality of, 85–86, 646–649, 646t, 647t, 648f, 648t, 649f, 650f
in transition cow nutrition, 702–703
volatile fatty acids in, 642
forestripping, for mastitis detection, 928
formic acid, 478
forward contracting, 1143
formaldehyde, in foot baths, 1100
formaldehyde, in foot baths, 1100
Fourier transform MIR (mid-FTIR), 1307
FPT (failure of passive immunity transfer), 149, 406
free radicals, minerals and, 672
free gossypol (FG), 809
gain-to-feed (GF) efficiency, 147
gait analysis, 1287
galactotransferase, 681
gap calculator, 930, 1069
gastrointestinal tract development, 410
gated bedded pen heifer buildings, 271, 272f
gated freestall heifer buildings, 271–272, 273f, 274f, 275f
gated self-cleaning heifer buildings, 272, 274, 276f, 277
gender equity, in small-scale livestock farming, 14
gene editing, 487, 606
gene mutations, 606, 607
generation interval, 332, 358, 380, 390–391, 599–600
genetically modified organisms, 116
genetic correlations, 347, 348f
 genetic diversity, 337–338, 337f, 337t, 364
genetic engineering of vaccines, 1089
genetic evaluation, 332–334
 genetic lag, 336, 337f
 genetic progress, 390–391, 391f, 599
 genetic selection
 for A2 β-casein, 359
 accuracy of, 380
 advanced reproductive technologies and, 385–387, 386f, 387f
 in AI sire selection, 571–572
 for calving performance, 360
 corrective mating, 364–366, 365f, 392
 for cow conformation, 360–361
 with crossbreeding, 369–370, 370f
 of dams of females, 358, 379
 of dams of males, 357–358
 against displaced abomasum, 1046–1047
epigenetics and, 605
 against extra teats, 1044
 for feed efficiency, 64–65, 65f, 338
 for fertility, 350–353, 360, 381
 for cow conformation, 360–361
 with crossbreeding, 369–370, 370f
 of dams of females, 358, 379
 of dams of males, 357–358
 against displaced abomasum, 1046–1047
epigenetics and, 605
 against extra teats, 1044
 for feed efficiency, 64–65, 65f, 338
 for fertility, 350–353, 360, 381
 for cow conformation, 360–361
 with crossbreeding, 369–370, 370f
 of dams of females, 358, 379
 of dams of males, 357–358
 against displaced abomasum, 1046–1047
epigenetics and, 605
 against extra teats, 1044
 for feed efficiency, 64–65, 65f, 338
 for fertility, 350–353, 360, 381
 for cow conformation, 360–361
 with crossbreeding, 369–370, 370f
 of dams of females, 358, 379
 of dams of males, 357–358
 against displaced abomasum, 1046–1047
epigenetics and, 605
 against extra teats, 1044
 for feed efficiency, 64–65, 65f, 338
 for fertility, 350–353, 360, 381
 for cow conformation, 360–361
 with crossbreeding, 369–370, 370f
 of dams of females, 358, 379
 of dams of males, 357–358
 against displaced abomasum, 1046–1047
epigenetics and, 605
 against extra teats, 1044
 for feed efficiency, 64–65, 65f, 338
 for fertility, 350–353, 360, 381
 for cow conformation, 360–361
 with crossbreeding, 369–370, 370f
 of dams of females, 358, 379
 of dams of males, 357–358
 against displaced abomasum, 1046–1047
epigenetics and, 605
 against extra teats, 1044
 for feed efficiency, 64–65, 65f, 338
 for fertility, 350–353, 360, 381
 for cow conformation, 360–361
 with crossbreeding, 369–370, 370f
 of dams of females, 358, 379
 of dams of males, 357–358
 against displaced abomasum, 1046–1047
epigenetics and, 605
 against extra teats, 1044
 for feed efficiency, 64–65, 65f, 338
 for fertility, 350–353, 360, 381
 for cow conformation, 360–361
 with crossbreeding, 369–370, 370f
 of dams of females, 358, 379
 of dams of males, 357–358
 against displaced abomasum, 1046–1047
for milk production, 335–339, 335f, 336f, 337f, 337t, 358–359, 359f
mixed model methodology, 332
novel phenotypes for, 1254–1255
objectives of, 357, 380
against ocular squamous cell carcinoma, 1046
pathogen effects, 345–347
paths of selection in, 357–358, 379
for physical conformation, 360–361
for polled trait, 1040
for production efficiency, 335–339, 335f, 336f, 337f, 337t
record keeping in, 329, 331–332, 333, 334, 337, 341
of replacement heifers, 381, 382f
risk management in, 363–364
selection indices, 361–363, 361t, 362f
simulation studies and, 383–385, 384f
of sires of females, 358
of sires of males, 357
for thermodurability, 587–588
for type traits, 352
for udder health, 342–343, 359–360, 381, 1173
undesirable correlations, 338
US dairy genetic evaluation system, 334
US genetics industry, 334
utilization of genetic data, 347–349, 348f
against viral diseases, 344–345
genetic variance, 332, 390–391, 599
genomic predicted transmitting abilities (GPTA), 358, 360
genomic testing
cooperative use of data, 332, 348
data ownership, 1256–1257
in elite stock marketing, 393–394
factors affecting, 380–381
in selecting replacement heifers, 381, 382f
in sire selection, 571–572
strategy in, 381

Germany
health data in, 347
milking parlour trends, 872, 884
on pain relief for castration, 1043
gestation length, heritability of, 529
GF (gain-to-feed) efficiency, 147

Giardia bovis, 1116

Giardia lamblia, 1121
Gir (Gyr) breed, 377
Global Animal Partnership, 998–999
global dairy markets, 299–306. See also economics; international trade; milk markets and marketing
cost of milk production, 302–306, 303f, 305f
feed price development, 300, 300f
IFCN method of identifying dairy farming systems, 301–303, 302f
margin over compound feed costs, 301
milk:feed price ratio, 301
milk price development, 299–300, 300f
US as dairy exporter, 312–313, 312f
global warming potential (GWP), 20–21

glucose, 639, 800–801
glucose metabolism, 421–422, 425
glucose tolerance factor, 684
glycerol, 741
glycosyltransferase, 681
glycine, 105
gonadotropin-releasing hormone (GnRH)
See gonadotropin-releasing hormone

goat-based bonnuses, 1204–1205, 1204f
goats, milk supply from, 4, 5f
goitrogens, 679–680
gonadotropin-releasing hormone (GnRH) duration of sperm competency and,
574–575
in the estrous cycle, 489, 491, 493t, 499, 500f
immunocastration by, 1042
low glucose and, 801
Ovsynch protocol, 505, 506f, 507–511, 507f, 508f, 510f, 516f
to restore fertility after heat stress, 586
uterine disease and, 538

Gossypol, 746, 800
government-owned dairies, 84
GPTA (genomic predicted transmitting abilities), 358, 360
Grains
by-products, fats in, 657t, 658
corn, 657–658, 657t, 742–743, 742t, 843f
fatty acids in, 657–658, 657t
processing, 753, 756f
sources of variation in, 716–718, 716–717t, 718t
graminolcyte-colony stimulating factor (G-SCF), 918
graminoliatous lesions, 1104–1105
gastrostomies. See also
Grazing Merit (GM), 335f, 363

grazing systems, 99–113. See also seasonally

calving herds
automated estrus detection systems in, 1270
automatic milking systems and, 130–131
automatic sort gates, 130
breeding cows for, 106–107
calving date and pattern, 101–102, 101f, 923

coping feeding position from, 796
cost of milk production in, 100, 100f
differences from other systems, 922–924, 922f, 923f
diurnal feeding behavior in, 788–789
farm design, 103–106, 104f, 131–133, 132f
finishing dairy beef in, 153
forage choice, 107–108
grazing intensity, 109–110, 119
grazing interval, 108–109, 109f, 110f, 119

hoof health and, 1099
hybrid, 113
hypomagnesemia in, 1080–1081
importing feed in, 102–103
infrastructure, 103–106, 104f, 105f, 106f
management-intensive rotational grazing, 118–119, 120f, 182–183, 183f
mastitis and, 902, 903, 924–926, 928–931
in organic dairy production, 116, 118–119, 120f
pasture diversity, 119, 120f
pasture management, 108, 118–119, 120f
prevalence of, 921
stocking rate, 102
supplementary or buffer feeding response, 110–113, 112f
teat sealants in, 927–928
yearly schedules for, 923–924, 926–928

hydrometeorology, 314–316

greenhouse gas emissions. See also carbon footprint of milk production

definition of, 1, 19
indirect emissions, 24
life cycle assessment of, 19–20, 20f
milk production sources, 14–15, 15f, 19–26, 20f, 22t, 24t, 26t
upstream sources, 22t

vital reduction goal, 19

grid pricing, 158
gross cash farm income, 1134
gross energy (GE) of feed, 62, 62f
ground reaction forces, 1287
group housing of calves, 476–482. See also
calf and heifer facilities
ad libitum acidified milk feeders, 478–479
automated calf feeders in, 479–482, 481f
benefits of, 476–477
disease risk in, 447–448, 448f, 477, 480–482, 481f
environmental management, 477, 480
group size, 477

mob feeders in, 478
ventilation in, 480

group hutch and paddock, 268, 268f
grouping

calves, 476–482, 481f
in farmstand design, 172–173, 173f

INDEX

1329
INDEX

group size, 187, 477
handling techniques, 1033–1034
heifers, 227–228
milking center design, 187
nutritional, 65–66, 66f
transition cows, 226–234, 227f, 229f, 233f, 700, 1072
group pens. See also group housing of calves
for baby and transition calves, 260, 423
for calving, 448
learned eating behaviors in, 416
socially stable group pen management, 226, 227f
growth hormones
in mammary development, 819–821, 822, 825
in milk production, 829–831, 830f, 832
negative energy balance and, 801
prohibited in organic production, 116
in milk production, 829–831, 830f, 832
in net merit economic index, 331–332, 332f
setting growth targets, 432–435, 432f, 433f, 434f, 435f
universal benchmarks for, 434–435, 434f
Helcococcus param, 535
helmint parasites, 1117–1120, 1118f, 1119f, 1119f. See also parasites
hemicellulose, 641
hepatocyte growth factor (HGF), 821
herd managers, 74, 224, 229
herdperson, 224, 237
herd types, 71
heritability of traits. See also genetic selection
in diseases, 347–349, 348f, 1107
in net merit economic index, 331–332, 332f
selection for low-heritability traits, 337, 341–342, 346
herringbone parlors, 870, 871f
rotary, 872, 872f, 877, 881–882
heterosis. See hybrid vigor
high de novo (HDN) fatty acids, 1307–1309, 1308f, 1309f
high-moisture corn (HMC), 726, 727, 732–733
high-volume low-speed (HVLS) fans, 241–243, 243f
hip lifts (hip clamps), 1009
hiring. See employees; human resources; recruitment and hiring
HMC (high-moisture corn), 726, 727, 732–733
holding pens, 871f, 872f, 873–874, 873f
holidays, 1207
Holstein cows
in beef production, 144, 147, 152–158, 154f, 155f, 155f, 156f
body weight variation, 434
calving age in, 432
corrective mating of, 364–366, 365f
examples of milk composition from, 1312
feed intake of, 435–436, 435f
holding pens for, 874
increasing frame size of, 361, 1016
modeling fat content of milk from, 1306–1311, 1308f, 1309f, 1310f, 1311f
North Florida Holsteins case study, 385–387, 386f, 387f

H

Haemotobia irritans, 1120
Haemotopinus eurysternus, 1120
Haemotopinus quadripertusus, 1120
Haemonchus spp., 1117, 1119
Haemophilus somnus, 345
handling techniques, 1027–1036
avoidance distance and, 1028–1029
cattle senses and behavior, 1029–1030
clear signals in, 1030–1031
cows stopping, 1033
effects of handling, 1027–1029, 1029f
lameness and, 1099
letting cows assess the situation, 1031
loading cattle, 1035, 1035f, 1035v
in the milking parlor, 1034
movement direction, 1032
moving groups of cows, 1033–1034, 1034f
pressure and flight zone, 1031–1032, 1032e
speed of approach, 1032–1033
timing of approach, 1033
zigzag lines in, 1033, 1034, 1034f
hay, 415–416, 426, 426f, 752–753
hCG (human chorionic gonadotropin), 586
HCR (heifer conception rate), 349
HDN (high de novo) fatty acids, 1307–1309, 1308f, 1309f
headlocks, 231
health insurance, 1207
Healthy Udder Service, 930
hearing, 1030
heat abatement, 240, 241f
heat stress
antioxidants for, 585
bulls and, 581–582
calves and, 414, 449
cooling methods for, 591–592
costs of, 596
cow productivity and, 310
definition of, 579, 585, 591
dietary fat and, 564
DMI and metabolic effects of, 592
embryo transfer and, 583f, 584–585, 584f
estrus and, 580–582, 581f, 582f
farmstead design and, 169
fertility and, 582–584, 582f, 582f, 583f
fetal growth and, 584
herd management and, 437f
reproductive performance and, 584, 593
restoring fertility after, 583f, 586–587
subsequent milk yield and, 592, 592f
in transition cows, 1072
in utero, 593, 594, 595f
water temperature and, 613
HeatWatch system, 494
hedging, 1143–1145
heifer conception rate (HCR), 349
heifer nutrition, 341–442
amino acid supplementation, 440–441
body size and, 434–435, 434f
bunk management and, 437
dietary energy, 437–439, 439f
dry matter intake, 435–436, 435f
eating speed, 437
environmental temperature and, 438
limiting feed intake, 436–437
protein, 439–441, 440f
reproductive efficiency, 433–434, 433f
target calving age, 432–433, 432f
vitamins and minerals, 440f, 441, 660f
heifers. See also calf and heifer disease prevention; calf and heifer facilities; heifer nutrition; replacement heifers
antimicrobials for, 927–928
bunk management, 437
in calving management groups, 227–228
environmental temperature and, 438
estrous detection in, 1274
in first visit to milking parlor, 1034
growth monitoring, 256–257, 464f
housing system management plan, 175, 446–447, 447f
management plan for, 155–157, 156f, 157f
setting growth targets, 432–435, 432f, 433f, 434f, 435f
Helcococcus param, 535
heterosis. See also genetic selection
in diseases, 347–349, 348f, 1107
genetic progress and, 390
of gestation length, 529
in net merit economic index, 331–332, 332f
selection for low-heritability traits, 337, 341–342, 346
herringbone parlors, 870, 871f
rotary, 872, 872f, 877, 881–882
heterosis. See hybrid vigor
high de novo (HDN) fatty acids, 1307–1309, 1308f, 1309f
high-moisture corn (HMC), 726, 727, 732–733
high-volume low-speed (HVLS) fans, 241–243, 243f
hip lifts (hip clamps), 1009
hiring. See employees; human resources; recruitment and hiring
HMC (high-moisture corn), 726, 727, 732–733
holding pens, 871f, 872f, 873–874, 873f
holidays, 1207
Holstein cows
in beef production, 144, 147, 152–158, 154f, 155f, 155f, 156f
body weight variation, 434
calving age in, 432
corrective mating of, 364–366, 365f
examples of milk composition from, 1312
feed intake of, 435–436, 435f
holding pens for, 874
increasing frame size of, 361, 1016
modeling fat content of milk from, 1306–1311, 1308f, 1309f, 1310f, 1311f
North Florida Holsteins case study, 385–387, 386f, 387f
INDEX

polled, 1040
homeothermy, 240
homolactic acid bacteria, 731
hookworms, 1119. See also parasites
horizontal auger mixers, 293f, 294
hormones. See also names of specific hormones
 in the estrous cycle, 491–493, 493t, 494f, 500f
 in milk production, 829–831, 830f, 834–837
horn flies, 1120–1121
hospital pens. See also compromised cattle
 design of, 1060, 1060f
 managers for, 934–936, 935f, 935t, 936t, 937t
 non-ambulatory cattle, 1006, 1009f, 1010, 1020f, 1021f
host-adapted mastitis. See mastitis
hot carcass weight, 152
hot climates, 83–98. See also heat stress; ventilation
biosecurity, 94–95
cooler in, 93–94
dairy employees, 85
definition of, 83
desert barn dairies, 89–90, 89f, 95, 182, 182f
development concerns in, 84
dry-lot dairies in, 87–89, 88f, 88t, 89t
evaporative cooling, 243, 243t
feed and water in, 85–87
heat abatement, 240, 241f
low-profile cross-ventilated barn dairies, 91, 91f, 92f, 179–181, 180f
naturally ventilated freestall barn dairies, 90–91, 90f, 239–240
shade, 240–241, 252
site selection and construction, 95–97
transportation in, 87
tunnel-ventilated freestall barn dairies, 93, 93f, 94f, 241–242, 243f
hot-iron disbudding, 995–996, 997
hourly wages, 1203
house flies, 1120–1121
housing. See also calf and heifer facilities; farmstead design; group housing of calves; mature cow housing systems; ventilation
automated estrus detection systems and, 1269
for automatic milking systems, 133–138, 135f, 137f, 139f, 140f
biosecurity, 94–95
bottlenecks in design, 79–80
calf and heifer housing management plan, 175, 446–447, 447f
concrete surface treatment, 97
cooling in, 93–94
costs of, 459–460, 466, 468–469, 471f
in dairy beef production, 144, 150, 153, 156f, 157f
desert barn, 89–90, 89f, 182, 182f
dry-lot dairies, 87–89, 88f, 88t, 89t, 181–182, 181f
hot climates, 84, 87–93, 88f, 89f, 90f, 91f, 92f, 93f
for lactating cows, 171, 234–235, 235f
lameness and, 1097–1098
low-profile cross-ventilated barns, 91, 91f, 92f, 179–181, 180f
management plan and design, 172–174, 173t
manure removal systems, 97
mastitis and, 899–902, 900f
methane emissions from, 21–22, 22f
naturally ventilated freestall barns, 90–91, 90f, 176–177, 178f
overcrowding in, 447–448, 448f
phased approach in, 96
sanitation, 899–902, 900f
site selection and construction, 95–97
social, 427–428, 477
special needs pens, 1006, 1009f, 1010, 1020f, 1021f
in temperate climates, 72
warm-ventilated freestall barns, 93, 93f, 94f, 177–179, 179f, 241–242, 243f
walking surfaces, 244–245, 245f
wintering barns in pastured systems, 926
housing benefits for employees, 1208
housing modules, 249–250, 249f, 250f, 252f
human chorionic gonadotropin (hCG), 586
human health
antibiotic resistance from cows, 30f, 39, 954–955
Cohn’s disease and Johne’s disease, 1108, 1110
foodborne illnesses, 956–957
silo-filler’s disease, 53–54
somatic cell count and, 949–950
human resources, 1189–1199. See also employees
immunization
in dairy production, 914–915
job analysis, 1191–1192
job descriptions, 1190–1193, 1194–1195
legal assistance in hiring, 1193, 1194–1195
onboarding and orientation, 1197–1199
risk management, 1142
humoral immune response, 914–915
hypocalcemia (milk fever)
behavioral signs of, 1007, 1059, 1061
clinical and subclinical, 1282
diet and, 671, 706, 802
economic impact of, 1070
general selection and, 344, 358
magnesium supplementation and, 926
overview of, 1077–1078, 1078t, 1083f
precision monitoring for, 1282
prevalence of, 1056f
prevention of, 1078–1080
subclinical, 1077
Hypoderma bous, 1120–1121
Hypoderma lineatum, 1120–1121
hypokalemia, 1078t, 1082, 1083f
hyponagnesemia, 1078t, 1080–1081, 1083f
hypophosphatemia, 674, 1078t, 1080, 1083f
hypophosphatemic downer cow syndrome, 674
hypothalamus, 491
hypoxia, 399–400
ICAR (International Committee for Animal Recording), 346
idea-sharing by personnel, 1215–1218, 1218f
identification of animals, 1043
IFCN Dairy Research Network, 299, 301–303, 302f
IFOAM (International Federation of Organic Agriculture Movements), 998
IFSM (Integrated Farm System Model), 26–30, 30f
IGF-1 (insulin-like growth factor-1), 819–821, 830, 832–833
IM (intramammary) antibiotic therapy, 933–935, 938, 939t, 940–945. See also mastitis treatment
immune system
adaptive immunity, 537, 913–915, 914f
antioxidants and, 804–805
fat feeding and, 807–808
heat stress in cows and calves and, 592–593
humoral immune response, 914–915
impaired immunity factors, 536–537
innate immunity, 910–913, 911f
Johne’s disease and, 1105–1106
modulating against mastitis pathogens, 914f, 915–918
negative energy balance and, 800
pathogen recognition by endometrium cells, 536
stress and immunosuppression, 592–593, 1042–1043
in transition cows, 704, 705, 1068, 1072–1073
immunoglobulin function, 914–915, 914f
immunoglobulin G (IgG)
in calves, 149, 397, 446, 593
heat stress and, 593
immune response and, 537, 914–915, 914f
in lactogenesis, 822
in mastitis, 914f
immunomodulators, 918
immunostimulants, in mastitis, 918
imprecise predictions, risk of, 363
IMPS (Institutional Meat Purchase Specification) number, 158
imputation, 334
inactivated vaccines, 1088–1089. See also vaccines
inbreeding, 337–338, 337f, 337t, 364, 392, 600. See also crossbreeding
InCalf program, 525, 527–528, 527f

INDEX

interdigital hyperplasia, 1168
interest, costs of, 460, 471f
interest expense ratio, 1138
interleukins, 536
interleukin interval, 497
internal rate of return (IRR), 1299
International Bull Evaluation Service, 334
International Committee for Animal Recording (ICAR), 346
International Federation of Organic Agriculture Movements (IFOAM), 998
International Finance Corporation, 994
International Organization for Standardization (ISO), 994

international trade. See also

IRF (internal rate of return), 1299
irrigation water, silage leachate in, 290
ischiadic nerve damage, 1007–1008, 1008f
isolation. See also hospital pens for compromised cattle, 1006, 1060, 1069f
maternal desire for, 1056, 1057f
ivermectin, 1123, 1123f, 1124
IVF. See in vitro fertilization

J

Japan, as milk importer, 12, 314
Jersey cattle
age of first calving, 432
in beef production, 144, 147
breed characteristics, 371, 372f, 372t
corrective mating of, 366
crossbreeding of, 372–374, 373t, 376, 376f
CWC15 mutation in, 600
finished, 152–153, 154f, 155f
holding pens for, 874
Jersey Performance Index (JPI), 389–390, 390f
job analysis, 1191–1192
job descriptions, 1190–1194
assembly of, 1192
benefits from, 1190–1191
definition of, 1190
elements of, 1192–1193
performance expectations, 1222
in recruitment, 1194
standards of behavior, 1222
tools for developing, 1192

Johnne’s disease (paratuberculosis), 1103–1110
causative agent, 215, 478, 1103
control programs, 1108–1110
diagnostics, 1105–1106, 1109–1110
disease presentation, 1104–1105, 1104f
human health and, 1108, 1110
immune response to, 1105
management practices, 1109
in the maternity pen, 402
natural reservoirs of, 1107–1108
susceptibility to, 1107
transmission of, 215, 1106–1107
vaccination and treatment, 1110
just-in-time pen management, 225, 226f
J-Vac coliform vaccine, 916

K

Kansas, milk production in, 309
keratin, teat canal, 855, 856f, 908–909
ketoprofen, 1047
ketosis. See also subacute ruminal acidosis
behavioral signs of, 1058–1059, 1061
costs of, 1168–1169, 1173
INDEX

1333
detection and treatment of, 1081

diseases and, 802

feed bunk competition and, 794

fertility and, 801
genetic selection and, 343, 358

monitoring for, 1282–1283, 1307

overview of, 1078, 1081, 1083

prevention of, 1081–1082

subclinical, 794

Ketostix urine test, 1283

See also

milk production

Klebsiella

See also lactase, gene mutation for, 307–308

laboratory pasteurization count (LPC), See

label-retaining mammary cells (LREC), 825

killed vaccines, 1088–1089. See also
killed vaccines

Lactobacillus plantarum, 731

Lactobacillus buchneri, 642, 731, 732, 733

Lactococcus lactis, 735, 736

Lactobacillus buchneri, 642, 731, 732, 733

Lactobacillus plantarum, 731

lactocrine hypothesis, 410

lactoferrin (Lf), 912

lactogenesis, 822

lactose, synthesis of, 633, 639, 642, 822

lag, in data, 550

lagging indicators, 550

lameness, 1093–1101

animal welfare standards on, 995, 1001

automatic milking systems and, 134

causes of, 1014

claw amputation, 1045–1046

costs of, 1094, 1168, 1173

cow's digit or claw, 1014–1015, 1061

culling for, 1094–1095

definition of severe, 1023f

feed additives and, 1097

footbaths and, 1099–1100

foot care programs, 1100

locomotion score, 1015

milk yield and, 1094

nutrition for hoof health, 1095–1097, 1096t

precision monitoring of, 1254–1255,

1287–1288

prevalence of, 1056f, 1093

reproductive performance and, 1094

stall design and surface, 1097–1098

standard operating procedures for, 1023f

upper leg, 1014

as a welfare issue, 1093–1094

laminitis, 1014, 1095

large-calf syndrome, 603, 604f

large follicle anovular phenotype, 499, 500f

lasalocid, 151

late embryonic loss, 556–557

law of diminishing returns, 1153, 1155

LBF (liver blood flow), 493

LCA (life cycle assessment), 19–20, 20f,

27–30, 284f, 30f, 67

light, cow vision and, 1030

lighting, in transition cow facility, 232

limb brain, 1181

lime, greenhouse gas emissions from, 20,

22f, 23–24

liner compression, 862

enabling training and development, 1181–1182

farm culture and, 1182, 1183–1184

management versus, 1180

as proactive problem solving and decision making, 1182

qualities of a great leader, 1179–1180

representing the business, 1182–1183

strategic leadership team, 1183–1187,

1184f

trust and openness in, 1182

leading indicators, 550

lead milking employee, 75

lean management, 1239–1248

application of, 1242–1247, 1243f, 1244f

culture of continuous improvement,

1241, 1247

engaging staff in setting production targets, 1246–1247

identifying and maximizing value in processes, 1243–1244, 1243f, 1244f

information flow in, 1246–1247

inventories in, 1241

plan execution, 1246

principles in, 1239–1242

process mapping, 1244–1245, 1244f,

1246

process performance monitoring, 1247

production flow in, 1241

root-cause analysis, 1242, 1246

value creation in, 1240–1241

waste identification, 1241, 1244–1246,

1244f

LEAP (Livestock Environmental Assessment and Performance), 25

legal assistance for interview questions,

1193, 1194–1195

legumes, fixed nitrogen estimation from,

201

leptin, 821

leptospirosis, 1039

leukocytes in mastitis, 909, 911–913

leukotxin, 535

LGM Dairy (livestock gross margin dairy)

insurance, 1145

LH (luteinizing hormone), 489–490, 493,

493f, 499, 500f

liabilities, 1133

lice, 1120

life cycle assessment (LCA), 19–20, 20f,

27–30, 284f, 30f, 67

lifestyle dairies, 69, 71

lifetime net merit (NM$), 362, 383, 387f

light, cow vision and, 1030

lighting, in transition cow facility, 232

linin, 641, 646–647, 652

limbic brain, 1181

lime, greenhouse gas emissions from, 20,

22f, 23–24

liner compression, 862
liners, in milking machines, 862–864, 863f, 868, 869f, 929

Linognathus vivaldi, 1120

linoleic acid, 650f, 661, 805, 806–808

linolenic acid, 805–808

lips. See also fat and lipid nutrition

from by-products and co-products, 741, 741f

classification and analysis, 656–657, 656f

definition of, 655

lipopolysaccharide (LPS), 535

liquid fats, 657f, 658

liquidity, 1135f, 1136, 1141

liquid nitrogen tanks, 572–573

Listeria monocytogenes, 737, 957

liver, 134, 135

t, 670

liver, blood amino acids and, 633

liver blood flow (LBF), 493

liver flukes, 1119–1120, 1119f

livestock gross margin dairy (LGM Dairy)

liver flukes, 1119–1120, 1119f, 1123, 1125–1126

livestock, greenhouse gas emissions from, 14

livestock-associated MRSA (LA-MRSA), 342–343, 894

Livestock Environmental Assessment and Performance (LEAP), 25

livestock gross margin dairy (LGM Dairy)

insurance, 1129, 1145

loading cattle, 1035, 1035f, 1035v

lobules, 816, 824f

log linear somatic cell count score (LSC), 962, 964–965

longevity, fertility and, 352–353

low-sodium muscle area, 147

low de novo (LDN) fatty acids, 1307–1309, 1308f, 1309f

low-profile cross-ventilated (LPCV) barn

dairies, 91, 91f, 92f, 179–181, 180f

LPC (laboratory pasteurization count), 952

LREC (label-retaining mammary cells), 825

LSC (log linear somatic cell count score), 962, 964–965

lumen. See small intestine

luteinizing hormone (LH), 489–490, 493, 493t, 499, 500f, 801

luteolysis, 490f, 497

lyng and standing behavior

before giving birth, 1056–1057, 1057f

in normal transition cows, 1058

perching, 1061

rising behavior, 1097–1098

in sick cows, 1059–1061

lymphocytes, 909–912, 911t, 913–914, 914t

Lysig vaccine, 893, 916–917

lysin

availability of, 629, 633

in by-product feeds, 743, 743f

in plant protein, 8

INDEX

in transition cow nutrition, 704–705

Lys:Met ratio, 704–705

M

macrocyclic lactones, 1122–1123, 1124

macrominerals. See also names of individual minerals

blood pH and, 670–672

requirement for, 668–669, 668t, 669t

macrophages, 911, 913–914, 914t

magnesium (Mg)

absorption, 676

from diets, 668t, 669t, 670t, 671t

functions, 676

hypomagnesemia, 1078t, 1080–1081, 1083f

in lactation, 804

supplementation by, 676–677, 926, 1081

major histocompatibility complex (MHC), 913

make allowance, in pricing, 322

mammary epithelial cells (MEC), 834, 847–848

mammary gland regulation

adaptive immunity, 537, 913–915, 914t

aldrenalin in, 848

antibodies, 914–915

β-casein, 836

bovine placent lactogen, 831

cell proliferation-apoptosis balance, 834–835

dry period length, 833–834

feedback inhibitor of lactation, 835–836

growth hormones, 829–831, 830f, 832

innate immunity, 910–913, 911f

local control of, 834

milk composition changes during milking, 847–848

milking frequency, 830f, 831–835

oxytocin, 830f, 831–832, 842–844, 848–849, 908

peak milk yield, 834–835

photoperiod management, 830f, 831, 832–833

premilking induction, 845–847, 847f, 8446f,

prolactin, 830f, 831, 833

serotonin, 836–837

timing ofudder stimulation, 844–845, 845f

udder stimulation, 843–847, 844f, 846f, 847f, 860–861

vaginal stimulation and, 844, 844f

mammary glands, 815–826. See also mammary gland regulation; teats

basic structure of, 907–908, 908f

in beef heifers, 823, 825

in calves, 816–817, 817f

diet and, 816, 818f, 821, 822–823

evolution of, 816

genetic and epigenetic control of, 815, 821, 822–823

during gestation, 821–825, 823f, 824f

hormones, growth factors, and regulators, 819–821

infection response, 910, 911f

macrophscopic structure in lactation, 841–842, 843f

mammary stem cells, 825

mammary structures, 815–816

milk synthesis, secretion, and removal, 908

peripubertal, 817, 818–819, 818f

rodent models of, 819, 820f

mammary quarter dry-off, 1044–1045

management-based welfare requirements, 994

management-intensive rotational grazing (MIG), 118–119, 120f, 182–183, 183f

management plans, 169–170. See also farmstead design; site plan examples

calf and heifer housing, 175, 446–447, 447f

dairy herd, 168

feed and manure, 175, 211, 219

feed storage system, 174–175

housing system, 175, 446–447

labor efficiency, 175–176, 176f

lactating cow housing, 172

manure storage and handling, 175

master plan, 169–170

mastitis, 930–931, 932

milking center, 171–172, 171f

nutrient, 193

price risk management data, 325–326

replacement heifer facilities, 255–257, 256f, 257t

system components in, 170–171, 170f, 171f

transition cow housing, 174

management practices. See also lean management

animal welfare in, 1002

bottlenecks in design, 79–80

circles of excellence, 74, 76–77, 77f, 78f, 79f

climate and, 72, 73f

for feed efficiency, 65–66, 66f

footbaths, 134, 135f, 1099–1100

staff positions, 73–76

manganese (Mn)

from diets, 668t, 669t, 670t, 671t

functions and requirements, 680–681

in hoof health, 1096

Mannheimia haemolytica, 345, 452, 535

manure. See also manure management

air emissions from, 20–23, 22t, 28–30, 28t, 30f

antibiotics in, 38–41, 39f

in bedding, 901
INDEX

1335

mastitis focus report, 930

mastitis treatment
antibiotics for, 39, 891–892, 925–929, 934–936, 935f, 935t, 936t
criteria for justifiable antibiotic use in, 939t, 940–942, 941f, 943
culture-based antibiotic treatment, 943
dry cow therapy, 903, 945–947, 946f
duration of, 926, 940, 940t
extra-label, 937–938, 942
human health and, 38–39, 39f, 894, 939t, 940
identifying successful outcomes, 942
during lactation, 944–945
management options without antibiotics, 935–936, 937t
for Mycoplasma spp., 892, 917, 943
non-culture-based antibiotic treatment, 943
nonpermitted drugs, 938
for nonsevere mastitis, 942–943
over-the-counter drugs, 936–937
prescription drugs, 937
selecting appropriate drugs, 938–940, 939t
for severe mastitis, 942
for Staphylococcus aureus, 891–893,
904, 916–917, 934, 944–945
for Streptococcus agalactiae, 892
treatment for subclinical mastitis, 944–947, 946f
supplements in, 917–918
vaccines, 892–893, 904–915, 915–917
worker roles in, 929, 934–936

matu re body weight (MBW), 434

tature cow housing systems, 239–252.

MCP (mict ral crude protein), 582
mean, 714, 715t, 716t
measures of variation, 713–714, 715t
MEC (mammary epithelial cells), 834, 847–848
melatonin, 585, 586f, 832

See also mastitis treatment; subclinical mastitis
See also mastitis treatment; subclinical masti
meloxicam, 1041
meningitis, 1008
metabolic BW (MBW), 63
metabolic disorders, genetic selection and, 343–344. See also names of specific disorders
metabolizable energy (ME) intake, 110–111
metabolizable protein (MP), 627–628, 628f
metallothionein, 678, 683
metering, of manure flow, 213
methane
anaerobic digesters, 191
enteric dairy cattle emissions of, 14–15, 15f, 20–21, 22f, 28–29, 28f
soil warming potential of, 20
methionine, 633, 704–705, 707, 743, 743f
methoprene, 1124
methionine, 633, 704–705, 707, 743, 743f
methoprene, 1124
methyccillin-resistant Staphylococcus au-
recus (MRSA), 342–343, 894
metritis
bacterial pathogenesis of, 535
diagnosis and effects of, 540
disease and, 802
economic impact of, 1070, 1173
epidemiology of, 538–539
genetic selection and, 358
immune dysregulation in, 1073
postpartum incidence of, 533
precision monitoring for, 1284–1285, 1285f
puerperal, 537, 540
reduced fertility and, 351, 358, 537
symptoms, 351, 1059, 1061, 1062
treatment of, 540–541
metronidazole, 1121
Mexico, as milk importer, 12, 314
MFD. See milk fat depression
MHC (major histocompatibility complex), 913
microbial crude protein (MCP), 742
microbial inoculants, for silage, 731–732
micromanagement habit, 1237, 1238f
microminerals, 677–684, 706–707. See also names of individual microminerals
requirement for, 668–669, 668f, 669t
Middle East, 83, 84
mid-infrared (NIR) milk analysis system, 1306–1307
MIG (management-intensive rotational grazing), 118–119, 120f, 182–183, 183f
milbemycins, 1122–1123
MILC (Milk Income Loss Contract), 1145
milk check, 324, 324f
milk classes, pricing for, 323–324
milk composition. See also milk protein;
nonfat solids
bulk tank versus individual cow testing, 1312
continuing changes in on-farm analysis of, 1306–1307
contribution of, to FMMO prices, 327–328, 328f
ey early tests of milk fat, 1305–1306
examples of, from Holsteins, 1312
flavor profile, 748
genetic selection for, 359
human health and, 357
mastitis and, 950, 1286
modeling fat content, 1306–1311, 1308f, 1309f, 1310f, 1311f
NIR and MIR analysis systems, 1306
practical experience on, 1309–1310, 1309f
precision monitoring of, 1255
US market for, 326–328, 327f, 328f
milk consumption, 4, 5f, 10–11, 11f, 315, 327
milk ejection
alveoli in, 831, 842–843
composition changes in, 847–848
continuous oxytocin release and, 847
disturbed, 848–849
exogenous oxytocin in, 849
latency period in, 846–847, 847f
mammary gland structure, 841–842, 843f
milk ejection reflex, 908
milk letdown, 830f, 831–832
oxytocin function in, 842–843, 848–849
premilking induction, 845–847, 846f, 847f
timing in, 844–845, 845f
udder stimulation and, 843–844, 844f, 860–861
vaginal stimulation and, 844, 844f
Milk Exchange, 308
milk fat. See also milk fat depression
biosynthesis origin, 1309–1310, 1309f
butter and butterfat markets, 316f, 326–328, 326f, 327f, 328f
decreasing quantity during milking, 847–848
diseased, 848–849
early tests of, 1305
energy density of the ration and, 1311
fatty acids and, 642
feed formulation and, 661, 663–664
feed intake and, 1311
fat supplementation and, 661, 663–664, 663f
feed sorting and, 790
as indicator for SARA, 1284
modeling, 1306–1311, 1308f, 1309f, 1310f, 1311f
sugar intake and, 645
volatile fatty acids and, 642
Milk First systems, 880
milk fever. See hypocalcemia (milk fever)
Milk Income Loss Contract (MILC), 1145
milk market, 855, 864
Milk Income Loss Contract (MILC), 1145
milk marketing centers, 185–191. See also milk marketing parlors
bedding and manure system selection, 188–189, 189f
compromise ventilation design, 190
cow group or pen size determination, 187
cow traffic in, 129–133, 132f, 133f, 135–138, 189–190, 880, 884
ingeering design strategies, 185–186
functions of, 187
management plan, 171–172, 171f
maximum herd size, 186, 188
milking process map, 1244, 1244f
parlor sizing, 187–188, 876–877, 878f
robotic milking in, 188 (see also automatic milking systems)
utilities and, 190
water generated from, 220
milk completeness, 857–858, 859f, 865–866
milking frequency
in automatic milking systems, 128, 881
dry period length, 833–834
mastitis and, 925
milking completeness and, 865
milk yield and, 830f, 831–832
physiological responses to, 835
secretory diminution, 835
milking machines, 853–866. See also automatic milking systems
automatic stimulation, 870
automatic take-off, 865
biomechanics of milking, 853–854, 854f
cluster-teatcup removal settings, 865
cluster weight, 869–870
liner choices, 862–864, 863f
liners, 862–864, 863f, 868, 869f, 929
machine cleaning and sanitation, 861–862
mastitis risk and, 858, 859–860, 860f, 861, 902–903, 929
mechanism of, 868
milking completeness, 857–858, 859f, 865–866
milking gently, 855, 864, 866
milking procedures, 860–861, 928–930
milking speed, 854–855, 866
pulsation settings, 865, 869
teat canal keratin, 855, 856f
teat-end hyperkeratosis, 855, 857f
teat tissue congestion, 855–856, 857, 858f, 863–864
teat washing, 138–140, 870
udder stimulation, 843–844, 844f, 860–861
vacuum, 864, 864f, 868–869
milking manager, 75
milking parlors. See also milking centers in automated milking systems, 138–141 determining required size of, 187–188 entrapment in, 1015–1016 handling techniques in, 1034 heifers’ first visits to, 1034 herringbone, 870, 871f, 872, 872f, 877 importance of good handling in, 1029 in milking center design, 171–172 parallel, 870–871, 871f, 882, 882f rotary parlors (see rotary parlors) side-by-side, 139, 171, 188 sizing, 187–188, 876–877, 878f trends in, 872–873, 873f, 874f
milking technicians. See automatic milking systems
milking speed, 854–855, 866
milking systems, 867–884
automatic dipping robots, 877–878, 879f components of, 867–868 holding pens, 871f, 872f, 873–874, 873f management dashboard software for, 878, 879f throughput, 874–877, 875f, 875t, 876f, 876t, 877f, 878f
milking time throughput, 874–877, 875f, 875t, 876f, 876t, 877f, 878f
milk letdown, 830f, 831–832. See also milk ejection
mixers

- forage restrictors on, 762–764, 766f, 766v, 767f
- horizontal auger, 293f, 294
- inclusion rates, 294
- maintenance and selection, 768–769
- mixer design, 292–295, 293f, 294t
- reel, 293f, 294
- roughage processing, 294
- safety, 295
- sizing and capacity, 294, 294f
- vertical augers, 755
- vertical screw, 292, 293f

mixing consistency, 754–764. See also TMV variation control

- forage restrictor settings, 762–764, 766f, 766v, 767f
- hay quality and processing, 759, 763f
- liquid distribution, 762, 764v, 765f
- loading position on the mixer box, 756–758, 760f, 761f
- loading sequence, 759–762, 763f, 764f
- load size, 758–759, 762f, 762v
- mix time after last added ingredient, 758, 761–762, 761t, 764f
- properly timed augers, 764, 767v
- unlevel mixers, 756
- vertical mixer auger speed, 762, 765f, 766f
- worn augers, kicker plates, and knives, 754–756, 759, 759v
- mob feeders, 478
- mob grazing, 118, 119, 120f

modeling. See also economic modeling of raising strategies
digestion, 629
financial decision making, 1300
milk fat, 1306–1311, 1308f, 1309f, 1310f, 1311f
stochastic economic, 1153
modified Double-Ovsynch protocol, 509–510, 510f, 515–517, 516f
modified live vaccinations, 1088–1089. See also vaccines
MOET (multiple-ovulation embryo transfer). See superovulation
molasses, 425, 760–761, 762
molds, in silage, 733, 737
mollicutes, 890
molybdenum (Mo), 678
momentum, in data, 550
monensin
- benefits of, 708
- in calves and heifers, 450
- for hoof health, 1097
- in periparturient cows, 804, 1082
- for protozoa parasites, 1122
- trace minerals and, 706

Moniezia benedeni, 1120
Moniezia expansa, 1120
monthly milker meetings, 1215

Moraxella, 1121
morphine, 848
mortality. See also culling
costs of, 465–466, 469–470, 471f, 561–562
documenting and recording, 1014
in mastitis, 927–928
moxidectin, 1123, 1123t
MPP-Dairy (Margin Protection Program-Dairy), 1142, 1145–1147, 1146t
MSTN gene editing, 606

Multicriteria-Based Ranking Model for Risk Management of Animal Drug Residues in Milk and Milk Products (USFDA), 953–954
multiple-ovulation embryo transfer (MOET). See superovulation
MUN (milk urea-N), 636, 640, 762, 1306–1307, 1311
Musca autumnalis, 1120–1121
Musca domestica, 1120–1121
Mycobacterium avium spp. paratuberculosis (MAP), 215, 478, 1103, 1105–1108
Mycoplasma bovis, 889, 917, 943
Mycoplasma spp.
- in bovine respiratory disease, 345
- clinical signs of mastitis, 889–981
- in colostrum, 405
detection of, 891
- in mastitis, 342, 882
- treatment for, 892, 917
- prevention and control of, 893–895
- sources and transmission of, 888–889
mycotoxins, 746, 809
myeloperoxidase, 912
myoepithelial cells (MEC), 841–842

N

naloxone, 848
narcotic, microbial transmission from, 888
National Animal Health Monitoring System (NAHMS), 915
National Association of Animal Breeders (NAAB), 334, 568–569
National Conference on Interstate Milk Shipments (NCIMS), 950
National Dairy Farmers Assuring Responsible Management (FARM) program, 994
National Dairy Herd Information Association (DHIA), 334
National Farm Animal Care Council (NFACC), 994, 1000
National Organic Program (NOP), 116, 123
native cattle, in dairy beef production, 144, 147
natural behavior, in animal welfare programs, 999
natural killer (NK) cells, 912, 914f
naturally ventilated (NV) facilities
calf and heifer facilities, 258–259, 451
easy site plan for, 176–177, 178f
freestall barns, 90–91, 90f, 239–240
with increased air speed, 242
insulation in, 258

NDF. See neutral detergent fiber
NEAA (nonessential amino acids), 626, 627f, 633
near-infrared (NIR) milk analysis system, 1306
Nebraska CNMP Whole-Farm Nutrient Balance software, 201
neck injuries, rail placement and, 792, 795–796
neck rails, 247, 792, 795–796
NEFA. See nonesterified fatty acids
negative energy balance (NEB), 521–522, 800–802, 1068, 1282–1283
negative predictive value, 1258–1259
nematodes (roundworms), 1117–1119, 1118f, 1122–1123, 1123f, 1124–1125
Nematodirus spp., 1117, 1119
neomycin, 40
Neospora canis, 1117, 1121
net cash farm income, 1134
net energy for gain (NEg), 144, 153, 437
net energy for maintenance (NEm), 437–438, 476
net energy (NE) of feed, 62, 62f
net farm income (NFI), 1134, 1137
net farm income ratio, 1138
Net Merit (NM$), 349, 362, 383, 387f, 389–390, 390f
net merit economic index (NMS), 331–332, 332f, 335, 335f
net present value (NPV), 1299
neutral detergent fiber (NDF), 641
increasing digestibility of, 740–741
measuring digestibility of, 642–643, 643f, 643f
silage preparation and, 742
supplementation of, 742
in transition cow nutrition, 700–701, 702–703
neutral extracellular trap (NET), 911–912
nutrients, in mastitis, 910–911, 911f
New York, milk production in, 309, 309f, 311, 311f, 312f
New Zealand
animal welfare programs in, 993, 997, 1000
cost of milk production in, 303f, 304–305, 305f
dairy business models, 313–314
drinking water standards in, 616t
InCalf program, 527–528
mastitis control in, 930–931, 932
as milk exporter, 12, 312, 313
as milk exporter, 12, 312, 313
mastitis control in, 930–931, 932
InCalf program, 527–528
as milk exporter, 12, 312, 313
nutrient balance
See also
nitrogen.
nitrate, 33, 53, 619, 619f
NIR (near-infrared) milk analysis system, niche dairy farms, 71, 144, 153, 161
NFACC (National Farm Animal Care Council), 994, 1000
NFC (nonfiber carbohydrates), 642
niacin, 694t, 695, 707
niche dairy farms, 71, 144, 153, 161
NIR (near-infrared) milk analysis system, 1306
nitrates, 33, 53, 619, 619t
nitrogen. See also nutrient balance
legume-fixed estimation, 201
NH₄-N, 631–632
nitrogen balance, 195–197, 196f, 197t, 206
nitrogen use efficiency, 633, 634, 636
recovery of, from manure, 217
use efficiency, 34, 35f
whole-farm nutrient balance for, 195–197, 196f, 197t, 201, 204f, 205–207
nitrogen use efficiency (NUE), 633, 634, 636
nitrous oxides. See oxides of nitrogen (NOx)
NK (natural killer) cells, 912, 914f
NMP (nutrient management plans), 34, 35f, 37
noises, cows and, 1031–1032, 1033
non-ambulatory cattle, 1006–1011
causes of, 1007–1008, 1018f–1019f
definition and diagnosis of, 1006–1007, 1018f
emergency care, 1008–1009, 1018f
evaluation and monitoring, 1019f
feed and water containers, 1011, 1011f
moving, 1009–1011, 1009f, 1010f, 1011f, 1020f
occurrence of, 1007
positioning the feet and legs, 1010
rolling technique, 1009f, 1010
special needs pens, 1006, 1009f, 1010, 1020f, 1021f
standard operating procedures for, 1009–1011, 1018f–1019f, 1020f, 1021f
nonessential amino acids (NEAA), 626, 627t, 633, 1069
nonesterified fatty acids (NEFA) energy balance and, 800
metabolic imbalance and, 536–537
monitoring of, 1281–1282, 1307
niacin and, 695
regrouping of transition cows, 1062–1063
uterine disease and, 536–537
nonfat solids, US market for, 326–328, 327t, 328f
nonfiber carbohydrates (NFC), 642
nonsaleable milk, in calf feeding, 410t
nonsteroidal anti-inflammatory drugs (NSAIDS), 1042, 1045–1046, 1047
nonstructural carbohydrates (NSC), 642
NOP (National Organic Program), 116, 123
noradrenaline, 848
Normande breed, 371, 373, 376
nori, 304, 305
noradrenalin, 848
NSAIDS (nonsteroidal anti-inflammatory drugs), 1042, 1045–1046, 1047
NSAIDS (nonsteroidal anti-inflammatory drugs), 1042, 1045–1046, 1047
nonstructural carbohydrates (NSC), 642
NUE (nitrogen use efficiency), 633, 634, 636
nutrient balance, whole-farm, 193–209
benefits of, 207–209, 208f
calculating, 201, 202f
Comprehensive Nutrient Management Program, 205–206
crop-based nutrient plans and, 204–206
“feasible,” 203–204, 204f, 205f
metrics for measuring, 201–203, 203f
nitrogen balance, 195–197, 196f, 197t, 201, 204f, 205–207
nutrient imbalance, 195, 202–203, 203f, 207f
nutrient management plans, 193
nutrient recovery from manure, 216–219, 216f, 218f
options for improving, 206–207, 207f, 208f
overview of, 193–195, 194f
phosphorus balance, 197–201, 198f, 199t, 200f, 205–207, 205f
quick check methods for evaluating, 199–201, 199t, 200f
sources of variation, 34, 35f
Whole-Farm Nutrient Balance software, 201
nutrient management plans (NMP), 34, 35f, 37, 193, 204
nutrition. See energy needs; fat and lipid nutrition; feed; heifer nutrition; pre-weaned calf nutrition; transition cow nutrition
nutritional content of feed. See feed variability
nutritional grouping, 65–66, 66f
NV facilities. See naturally ventilated (NV) facilities
O
oat staggers. See hypomagnesemia
Oceanica, 6f, 303f, 304, 305
ocular squamous cell carcinoma (OSCC), 1046
Oesophagostomum spp., 1116, 1119
OIE (World Organisation for Animal Health), 991, 994
olive oilseeds
dietary fat from, 657t, 658
sources of variation in, 716–718, 716–717f, 718f
OMTDR (organic matter truly digested in the rumen), 632
onboarding, 1197–1199
One-Minute Manager, The (Blanchard and Johnson), 1214–1215
on-farm culture (OCF), 943
oocyte pickup (OCU), 393, 584, 602, 603f, 604–606
oocyte quality, fat feeding and, 806
open-lot dairy systems, 36
operating profit margin (OPM), 1137, 1138f
operational excellence, 1150–1151
operations management. See lean management
opportunity costs, 459, 460–461
opsionic antibody, 911
option strategies, 1144–1145
OPU (ovum pick-up), 393
organic dairy production, 115–125
buffer zones around, 116
cropping systems, 116, 118, 124
definition of, 115–116
disease prevention, 116, 120–121, 123, 124
large herd case studies, 123–125, 124f
nutrition and feeding, 118
organic certification, 116, 117–118
pasture management, 116, 118–119, 120f, 123
raising replacement heifers in, 121–123, 124
sales and growth, 116–117, 117f
soil management in, 116, 118, 119
transition to, 116
Organic Foods Production Act (OFPA) of 1990, 116–118
INDEX

from dairy operations, 14, 29
as ozone precursors, 47
regulatory standards for, 52–53
in silage emissions, 48, 52–54, 54f
sil-o-filler’s disease, 53–54
soil as source of, 23
types of, 53
oxygen barrier films, 728–729
oxygen-limiting steel silos, 730
oxylipids, 913
oxytetracycline, 40
oxycin action of, 842–843
continuous release and milk ejection, 847
cow handling techniques and, 1029
disturbed milk ejection and, 848–849
exogenous, 849
historical aspects, 842–843
in lactogenesis, 822
milk ejection with stimulation, 843–844, 84ff
in milk letdown, 830f, 831–832, 908
ozone precursors, in silage, 47–48, 52–54, 54f

P

PAG (pregnancy-associated glycoproteins), 512–514, 513t, 514f
pain
behavioral indicators of, 1005–1006
from castration, 1042
from dehorning or disbudding, 1039–1040
in newborn calves, 400, 402
PAMP (pathogen-associated molecular patterns), 536, 538
panel approach, to data collection, 302
para-amino benzoic acid (PABA) synthesis, 1121
parainfluenza-3 (PI3), vaccination against, 1089
parallel milking parlors, 870–871, 871f
rotation, 872, 873f, 877, 878f, 882, 882f
paralysis, 1007–1008
PDM.
See also compensation
PDCA (Purebred Dairy Cattle Association), 334, 336
PEAQ system, 724
pecin, 641
pedigrees, 334, 364, 383–385, 384f, 392
Pediococcus acidilactici, 731
Pediococcus pentaceus, 731
pedometers, 1266, 1282, 1287
pelleting, vitamin loss and, 697
Penn State Forage Separator, 726
Penn State Particle Separator (PSPS), 754, 755f, 758t, 760f, 761f
pen size, 187
Peptostreptococcus indolicus, 923
percent pregnant by “x” DIM, 552–553
perching behavior, 1061
performance expectations, 1222–1223
performance management, 1221–1229
measuring and monitoring, 1228
pay increases and promotions, 1229
performance coaching, 1225
parasites, 1115–1127
arthropods, 1120–1121
insects, 796, 888, 928, 1039, 1120–1121
mites, 1121
nematodes, 1117–1119, 1118f, 1122–1125, 1123t
in organic dairies, 121
pharmacology of parasiticides, 1121–1125
protozoa, 1116–1117, 1121–1122
recommended control programs, 1125–1126, 1126t
statistics on, 1115–1116
ticks, 1115, 1121
trematodes, 1119–1120, 1119f, 1123, 1124–1125
paratuberculosis. See Johne’s disease
parenchyma, 816–817, 817f, 818f, 819, 820f, 825, 833
parent averages (PA), 333, 358
paresis, 1007
partial budgets, 1129, 1151–1153, 1160, 1161f, 1297–1298, 1298f
partial least square (PLS) statistical models, 1307
partial mixed ration (PMR), 129
parturition, induction of, 522
pasteurization
adoptio of, 308
antimicrobial resistance and, 955
bacteria surviving, 952
foodborne pathogens and, 956
of milk fed to calves, 449, 461
Pasteurized Milk Ordinance (PMO), 949
Pasturella multocida, 452
pasture systems. See grazing systems;
seasonally calving herds
pathogen-associated molecular patterns (PAMP), 536, 538
pattern-recognition receptors (PRR), 536
pay grades and ranges, 1202–1203, 1202f
PDC (Purebred Dairy Cattle Association), 334, 336
PDM. See precision dairy monitoring
peak milk flowrate, 855
performance management, 1221–1229
measuring and monitoring, 1228
pay increases and promotions, 1229
performance coaching, 1225

organic matter truly digested in the rumen (OMTD), 632
Organic System Plan (OSP), 116
organic trace minerals, 706–707
organizational development, job descriptions in, 1191
organophosphates, 1124
orientation of new hires, 1197–1199
OSCC (ocular squamous cell carcinoma), 1046
osteomalacia, 691
Ostertagia ostertagi, 1117, 1118f, 1119, 1125, 1127
otitis, 888
ovary, 490–491, 490f, 806
ovarian function, 490, 490f, 497–499, 498f, 499f, 500f
overconditioning, 801
overcrowding
feed center design and, 794–795
in housing, 447–448, 448f
in moving to the milking parlor, 1034
of transition cows, 229–230, 230f, 794, 1062, 1073
overmilking, 855, 856–858, 859f, 862, 864–866
over-the-counter drugs (OTC), 936–937
Ovsynch protocols
Double-Ovsynch protocol, 508–510, 510f, 542
five-day versus seven-day, 510–511
GnRH and, 505, 506f, 507–511, 507f, 510f, 516f
modified Double-Ovsynch protocol, 509–510, 510f, 515–517, 516f
Ovsynch-56 protocol, 507, 509f, 515
pregnancy loss and, 499
Presynch-Ovsynch protocol, 506–507, 508f, 551, 1270
presynchronization using PGF2α, 506, 508f
Resynch protocol, 505, 511, 514–515
in seasonally calving herds, 528
timed AI and, 505–506, 506f, 507f
ovulation
anovulation, 495f, 496–499, 497f, 498f, 499f, 500f
in estrous cycle, 489–493, 490f, 492f, 498f
increased physical activity and, 1268
ovarian dysfunction after, 497
standing estrus and, 1268–1269
timing of insemination and, 1268–1269
ovulation synchronization. See synchronization
ovum pick-up (OPU), 393
owner equity (net worth), 1133, 1141
oxidation processes, in water treatment, 620
oxidative stress, minerals and, 672–673
oxides of nitrogen (NOx)
INDEX

1341

PMR (partial mixed ration), 129
pneumatic captive bolt guns, 1012
pneumonia, 1059. See also respiratory
disease
polio-encephalomalacia, 1008
polyethylene clinx films, on silos, 728–729
polyorphonuclear leukocytes (PMN), 533
polyunsaturated fatty acids (PUFA)
in by-products and co-products, 741
in late lactation, 779
milk fat depression and, 662–663, 783,
1311–1312
oxylipids and, 913
reproduction and, 705, 805–807, 810
subacute rumen acidosis and, 1095
in transition cows, 805
portable mixer feed center design, 285,
285f, 288f
portable transition calf shelters, 268, 268f
positive assortative mating, 391–392
positive feedback effect, 491
positive predictive value, 1258
potassium (K)

blood pH and, 673, 676, 706
in diet, 668f, 669f, 670f, 671f, 701,
1071
functions, 675
in heat stress, 672
hypokalemia, 1082
in hypomagnesemia, 1081
in transition cow nutrition, 706
utilization and homeostasis, 675–767
potassium carbonate, 1097
potassium chloride, in euthanasia, 1012,
1013
potato starch, 741
poured concrete silos, 730
power takeoff (PTO)-driven equipment,
safety in, 295
PPARG (peroxisome proliferator-activated
receptor gamma), 807
praziquantel, 1124
precision dairy monitoring (PDM),
1251–1261
precision feeding, 436–437
Predem 2X, 1082
predicted transmitting ability (PTA)
genetic diversity and, 337–338
genetic lag and, 336
in genetic selection, 337, 357–358, 379
in genomic prediction, 332–334, 333f,
335f, 336, 338
predictor population, 33
pregnancy. See also pregnancy loss
cæsarean section, 1047, 1048t
cow evaluation for, 1289–1290
conception rate, 349, 503, 569, 570
diagnosis methods, 511–512
fat feeding in, 805–808, 807t
mammary growth during, 821–825,
823f, 824f
minerals and, 667, 668t, 670t
nonpregnancy diagnosis methods,
511–512
nutrition for hoof health, 1096t
pregnancy proteins, 512–514, 513t,
514t
pregnancy rate, 525, 555, 603–604, 604f
timing of diagnosis, 514, 556
true, 557
vitamin E and, 693–694
pregnancy-associated glycoproteins (PAG),
512–514, 513f, 514f
pregnancy hard count, 557
pregnancy loss
cow evaluation for, 556
embryonic loss versus abortion, 556–
557
in embryo transfer, 603
fat feeding and reduction in, 806–807,
807t
for estrus detection, 1295–1296
evaluation criteria for, 1255, 1280
farmers’ preferences, 1300
herd level management, 1254
for hypocalcemia, 1282
for ketosis, 1282–1283
for lameness, 1254–1255, 1287–1288
for mastitis detection, 1280, 1285–
1286, 1294
for metritis, 1284–1285, 1285f
novel phenotypes for genetic selection,
1254–1255
overview of, 1293–1294
perceived benefits of, 1252
pitfalls to consider, 1300–1301
process controls, 1253
public perception of cattle welfare and,
1254
sensitivity and specificity, 1258–1259,
1280, 1297
sensor system levels, 1279
technologies available, 1252–1254,
1253f
technology validation, 1257–1258
wearable technologies, 1251, 1261

Performance evaluations, 1228–1229
performance feedback, 1225–1228,
1228f
performance goals, 1233
setting SMART goals, 1223–1225
setting standards and expectations,
1222–1223
supervisor–employee relationship,
1221–1222
permeate, in manure treatment, 217, 218
peroxisome proliferator-activated receptor
gamma (PPARG), 807
persistent infections (PI), 403
pesticides, in carbon footprint, 25
PGF
pros. See prostaglandin F
plagocyes, 911, 911f, 913
phalaris staggers, 677–678
plant breeding, for silage, 644–645
planned start of mating (PSM), 522
planned start of calving (PSC), 522
pithing, 1012
piperonyl butoxide, 1124
pinkeye, 1121
Picornaviridae, 345
pinkeye, 1121
piperonyl butoxide, 1124, 1125
pithing, 1012
planned start of calving (PSC), 522
planned start of mating (PSM), 522
plant breeding, for silage, 644–645, 644f,
644f, 645f, 645f
plasmin, 836
plasminogen, 836
plastic waste, 290
PLS (partial least square) statistical mod-
els, 1307
PMO (Pasteurized Milk Ordinance), 949
INDEX

heat stress and, 584
prevention strategies, 584–585
prevalence of, 1056f
INDEX

R
radio-frequency identification (RFID), 402, 479, 1043, 1289
rafoxanide, 1123
range, 714, 715f
rate of return on assets (ROA), 1137–1138
rate of return on equity (ROE), 1137–1138
raw milk, hazards in, 955–957
RDC (Red Dairy Cattle), in crossbreeding, 370–374, 371f, 372f, 373f, 374t, 376–377, 376f
RDP. See rumen-degradable protein
reactive oxygen species (ROS), 913
range, 714, 715
rafoxanide, 1123
radio-frequency identification (RFID), 829–831, 830f, 832, 834
recombinant cytokines, 918
recommended dietary allowance (RDA), 8
record keeping. See also financial performance benchmarks
accounting, 1132–1133
disease records, 346–347, 453, 454t, 557–558, 1068–1069
enanthiasis and mortality, 1014, 1022f
for evaluating reproductive performance, 552–553, 553f
in genetic selection, 329, 331–332, 333, 334, 337, 341
records analysis demonstration, 961–990
alarm thresholds, 971
bulk tank SCC estimation, 975–980, 977f, 978f, 979f, 980f
cure risk, 961, 979–980, 980f
current test-day evaluation, 965–968, 967f, 968f, 969f, 990f
current versus previous test profile (longitudinal quadrant analysis), 973f, 974–975, 975f, 976f, 977f
current versus previous test profile (quadrant analysis), 971–974, 973f, 974–979, 979f, 990f
dry cow profile (quadrant analysis), 987–988, 987f, 987f, 988f, 990t
examination methodology, 962
fresh cow SCC evaluation, 968–990t, 969f, 970f, 971f, 972f
herd requirements for, 961
historical herd reporting data, 962–963
historical production and LSC, 963–965, 964f, 964t
historic milk, SCC, and mastitis case count, 965, 966f
mastitis rates by month and 30-DIM, 982–987, 982f, 983f, 984f, 985f, 986f, 990t
mastitis rates in first 30 days of lactation by month of calving, 978f, 979f, 980–982, 980f, 981f, 990t
milk quality evaluation elements, 988–989
new infection rate, 961, 976–979, 978f, 979f
SCC criteria used in, 961–962, 962f
recruitment and hiring application forms, 1193–1194
communicating opportunities, 1193
employee handbook and policy documents, 1198–1199
employee turnover, 1189–1190
evaluation and selection of candidates, 1195–1196
first day of employment, 1195–1196
interviews, 1194–1195
job analysis, 1191–1192
job description, 1190, 1194–1195
legal assistance in, 1193, 1194–1195
onboarding and orientation, 1197–1199
references in, 1194, 1195–1196
Red Dairy Cattle (RDC), in crossbreeding, 370–374, 371f, 372f, 373f, 374t, 376–377, 376f
reel mixers, 293f, 294
regulated handlers, 320
regulation
of antibiotic use, 41
effectiveness for water quality, 37–38
of manure application, 35–36
process-based (permitting) approach to monitoring, 37
of air quality, 48
of water quality, 36–38
of antibiotic use, 41
of manure application, 35–36
effectiveness for water quality, 37–38
of antigen use, 41
of air quality, 48
of water quality, 36–38
relatedness, in farm culture, 1186
reliability (REL), in genetic selection, 332, 333, 334, 337, 341
reproductive management programs, 503–517
See also Ovsynch protocols; seasonally calving herds
aggressive synchronization, 515–516, 516f
automated estrus detection systems, 1270–1271
costs of, 562
economic value of a cow, 562–563
fertility programs for lactating cows, 507, 509f
fertility programs with PGF2α and GnRH or presynchronization, 507–510, 510f
first insemination strategies, 504–511
management-cycle approach, 523–525, 524f
objectives of, 503
other presynchronization strategies, 508–509, 511
Ovsynch and timed AI, 505–506, 506f, 507f
pregnancy diagnosis methods, 511–512
pregnancy proteins, 512–514, 513f, 514f
presynchronization using PGF2α, 506, 508f
return to estrus after AI, 511, 517f
semen quality in, 562–563
reproductive performance
analysis of, 552–558, 552f, 553f
dietary fat and, 664
lameness and, 1094
minerals and, 681, 707
monitoring change in, 550–552
natural service sires and, 575–576
quantifying value of reproductive change, 558–563, 560f
stress and, 580–582, 582f, 593, 1028
reproductive technologies. See also artificial insemination; embryo transfer; in vitro fertilization; sexed semen
artificial insemination in, 392–393
egg collection methods, 393, 584–585, 584f, 602
in elite breeding stock development, 391, 392–393
INDEX

gene editing, 606
in heifer replacement, 385–387, 386f, 387f
maximizing estrus detection, 506, 509f
oocyte generation, 606
P/AI changes, 556
somatic cell nuclear transfer, 605–606
superovulation, 584–585, 584f, 601–
603f, 604f, 604t
residual feed intake (RFI), 64, 64f, 65
resource-based welfare requirements, 994
respiratory disease
 group housing and, 477, 479
 Mycoplasma spp. and, 888
 pneumonia behavioral signs, 1059
 prevention and control in calves, 451–453, 466, 470
 resting areas, 245, 246f, 251f, 259–260
 resuscitation of calves, 400
 Resynch protocol, 505, 511, 514–515
 retained placenta
 behavioral signs of, 1059
 fertility and, 537–539
 genetic selection and, 352
 immune dysregulation in, 1073
 prevalence of, 1056f
 symptoms, 351–352
 retentate, in manure treatment, 217, 218
 retention pay-off, 562–563
 retinoic acid, 690
 retinol, 689, 692f
 return on assets (ROA), 1137–1138, 1138f
 return on equity (ROE), 1137, 1138f
 ROI (return on investment), 359, 1155–
1156
 reverse osmosis (RO), 218, 620
 RFC (ruminally fermentable carbohydrates), 642
 RFID (radio-frequency identification), 402, 479, 1043, 1289
 Rhipicephalus annulatus, 1121
 rickets, 691
 risk management, 1141–1147
 causal relationships in risk factors, 1171
 in dairy beef production, 159–160
 financial health monitoring in, 1141–
1142
 forward contracting, 1143
 in genetic selection, 363–364
 hedging, 1143–1145
 livestock gross margin dairy insurance, 1145
 Margin Protection Program–Dairy, 1142, 1145–1147, 1146f, 1147f
 types of risk, 1141–1142
 Risk Management Agency (RMA), 1145
 RMA (Risk Management Agency), 1145
 RO (reverse osmosis), 218, 620
 ROA (rate of return on assets), 1137–
1138, 1138f
 ROE (rate of return on equity), 1137–1138, 1138f
 RO (reverse osmosis), 218, 620
 RMA (Risk Management Agency), 1145
 RMA (Risk Management Agency), 1145
 RO (reverse osmosis), 218, 620
 ROA (rate of return on assets), 1137–
1138, 1138f
 robendine, 1122
 robotic milking systems. See automatic
milking systems
 rock phosphates, 685
 rodent control, 290–291
 ROI (return on investment), 359, 1155–
1156
 root-cause analysis, 1242, 1246
 ROS (reactive oxygen species), 635, 705
 rumen undegradable protein (RUP),
628–631, 628f, 705
 rumen unsaturated fatty acid load (RUFAL), 662, 1311
 rumen-protected amino acids (RPAA), 635, 705
 rumen undegradable protein (RUP),
628–631, 628f, 705
 rumen unsaturated fatty acid load (RUFAL), 662, 1311
 ruminally fermentable carbohydrates
(RFC), 642
 rumination, 423
 rumination collars, 1281
 rumination monitoring, 1073
 rumination time, 1254
 runoff control basins, 36
 Russian Federation, as milk importer, 12
 S
 Saccharomyces cerevisiae, 708
 sacrifice paddocks, 886, 926
 safety, human
 ABCs of resuscitation, 400
 in euthanasia methods, 1012
 in feed center design, 295
 food safety, 72
 in handling non-ambulatory cattle,
1016–1017
 in milking machine cleaning, 862
 mixers and, 295
 on-farm training program, 751
 in performing injections, 1042
 of recombinant bovine somatotropin,
830–831
 safety glasses, 1039
 tail docking and, 1039
 TMR feeder safety, 751–752
 in transition cow facility design, 236
 understanding cow behavior, 1028
 worker safety in transition cow facility
design, 236
 salinity of drinking water, 617–618, 618f
 Salmonella
 in calf diarrhea, 445–446
 in drinking water, 620
 in raw milk, 957
 treatment of, 39–40
 vaccination against, 449, 916
 Salmonella typhimurium, 916
 salts removal, 217–218
 sampling, variation due to, 714, 715f, 716,
718t, 746
 sand separation, from manure, 213–215,
214f, 215f
 San Joaquin Valley, 47, 48
 SARA. See subacute ruminal acidosis
 Sarcoptes scabiei, 1121
 sarcoplastic mange, 1121
 saturated fatty acids, 655, 658–659, 662,
1307
 Saudi Arabia, 12
 sawdust bedding, 900–901, 900f
 scale accuracy, 282–284, 283f, 284t
 scaly dandruff, 808
 SCC. See somatic cell count
 SCH (subclinical hypocalcemia), 803,
1077
 SCK (subclinical ketosis), 794
 SCNT (somatic cell nuclear transfer),
605–607, 607f
 scours, 678
 SCR (sire conception rate), 570–571, 571f
 scrape and flush system, 212–213
 SCS (somatic cell score), 342
INDEX

sick days, 1207
sickness behavior, 1058–1060, 1060f
sight, in cows, 1029–1030
silage, 47–57. See also silage fermentation;
silage harvesting and storage
additives in, 55–56
aerobic stability and feed-out, 733–734,
734f
blending, 752, 753f, 754f, 755f, 756v,
757f
butyric acid in, 642, 1082
by-products in, 744, 745f
California air quality regulations on,
48
corn, 657f, 658, 677
covers for, 55
defacing techniques, 56
feed-out management, 752
horizontal versus tower silos, 289,
291–292
leachate control and disposal, 290, 725
mitigation strategies for emissions,
54–56, 54t
ozone precursors in, 47–48, 52–54, 54f
percolate, 725
plant breeding for, 644–645, 644f, 644t,
645f, 645t
production phases, 48–51, 50f
quality assessment of, 734–737, 735t
sampling, 752, 755f
storage of, 51, 55–56, 289, 291–292
silage bags/bales, 291
silage fermentation
additives for, 55–56
clostridial fermentation, 725, 725f,
735–736
dry matter content and, 725–726, 725f
fermentation analysis, 734–735, 735t
pack density and, 727–728
in silage phases, 50f, 51
silage harvesting and storage, 723–737
aerobic stability after moving, 732
aerobic stability and feed-out, 733–734,
734f
chemical additives for aerobic stability,
732
choosing silo type, 729–731, 729t
clorstridial fermentation, 725, 725f,
735–736
dry matter and fermentation, 725–726,
725f
forage maturity and dry matter in,
723–724
forage particle size, 726–727
leachate and percolate, 725
managing heating problems, 736
managing moldy silage, 737
microbial inoculants, 731–732
nutritive value and ensiling time,
732–733
pack density, 727–729
quality assessment of, 734–737, 735t
selenium (Se)
deficiency, 404, 925
deficient from diets, 669t, 670t, 671t
functions, 681–682
immunity and, 804–805
mastitis and, 903, 917, 925
in New Zealand, 925
requirements for, 682
toxicity, 682–683
semen. See also sexed semen
from bulls in heat stress, 581
cow value and quality of, 562–563, 572
efficient utilization of, 567
optimum deposition site, 573–574
post-thaw evaluation program, 568
quality control of, 567–569
quality traits, 566–567, 569f
sperm defects, 566–567, 566f, 574
storage of, 572–573
swimming and handling of, 573
seniority-based bonuses, 1206
sensitivity, 1250
sensitivity analysis, 1152, 1162, 1297
septicemia, treatment for, 938, 940
serotonin, 836–837
Serratia marcescens, 897–898
Serratia spp., 343, 897–903
serum total protein (STP), 406
service sire fertility summary (SSFS),
570–571
setting basins, 213–214, 213f, 214f
sexed semen
cow value and, 562–563, 572
dairy production in, 146–147
in elite breeding stock, 392–393
in embryo transfer, 600
low yield of, 601–602
in organic dairy production, 121
in replacement heifers, 380, 385
separation method, 601
shade requirements, 105, 252
sheep, milk supply from, 4, 5f
site plan examples, 176–183
site plan examples, 176–183
site plan design, 182, 182f
site plan design, 182–182, 181f
land requirements, 176, 177f
mechanical cross-ventilated design,
179–181, 180f
natural ventilation design, 90–91, 90f,
176–177, 178f, 239–240
rotation grazing design, 182–183,
183f
transition cow barns in, 237–238, 237f
tunnel ventilation design, 177–179,
179f
sire conception rate (SCR), 570–571, 571t
sire selection. See also semen
corrective mating, 364–366, 365f, 392
in crossbreeding, 377
fertility evaluation methods, 569–571
four paths of, 357–358
genomic markers in, 571–572
increase in, 358–359, 359f
independent culling levels, 361–362,
362f
for lifetime net profit, 362–363
natural service sires, 575–576
reduce expenses, 359–361, 361f
risk management, 363–364
sire quality in, 567–569
sire conception rate, 570–571, 571t
understanding AI fertility estimates,
569, 570f
site elevation, 96
site plan examples, 176–183
site orientation, 95–96
INDEX

stress and, 1029

testing method, 951

somatic cell method transfer (SCNT), 605–607, 607f

somatic cell score (SCS), 342, 360

SOPs. See standard operating procedures

South America, pastured systems in, 921

Southeastern United States, milk production trends in, 310–312, 311f, 312f, 316

SPC (standard plate count), 480, 951–952

special needs pens, 1006, 1009f, 1010, 1020f, 1021f

speciation, in water quality, 614–615

specificity, 1259, 1297

speed of approach to cows, 1032–1033

Speed of Trust, The (Covey), 1219

speed of approach to cows, 1032–1033

Speed of Trust, The (Covey), 1219

sperm, 566–567, 566f, 574 : See also semen

spinal tumors, 1008

SSFS (service sire fertility summary), 570–571

stable flies, 1120–1121

stall curb, 1246

standard deviation (SD), 714, 715f, 716f

standard operating procedures (SOPs) basic information in, 1005

care for in special needs area, 1021f

care for cattle with severe lameness, 1023f

care for euthanasia, 1011–1014, 1022f

importance of, 73, 1005–1006

for moving down cows, 1009–1010, 1009f, 1010f, 1020f

for non-ambulatory cattle, 1009–1011, 1018f, 1019f

for physical entrapment emergencies, 1025f

in process targets, 1246

for weak, emaciated, and debilitated cattle, 1024f

standard plate count (SPC), 480, 951–952

standards of behavior, 1222

standing estrus, ovulation and, 1269

Staphylococcus aureus clinical signs of mastitis, 889–890

culling cows with, 943

dry cow therapy for, 945

infection process, 910

livestock-associated MRSA, 342–343, 394

mastitis treatment for, 891–893, 916–917, 925–926, 947

methicillin-resistant, 342–343, 894

in pastured systems, 924, 927

in raw milk, 957

sources and transmission of, 887–888

milk treatment for, 891–893, 916–917, 934, 944–945

vaccines for, 892–893, 916–917

Staphylococcus spp., 342–343, 535, 938, 939f

starch from by-products and co-products, 741, 741f

digestibility in silage, 733

digestion of, 643–645, 644f, 644t, 645f, 645t

stillbirths, 539

stimulation automatic, 870

oxytocin and, 843–844, 844f

timing of, 843–847, 845f, 846f

vaginal, 844, 844f

stochastic economic models, 1153

stocking density, 1072, 1099

stocking rate, 102, 128–129, 995

stockmanship, 1028, 1029f. See also handling techniques

Stomoxys calcitrans, 1120

storage phase of silage, 50f, 51

stormwater, 220

STP (serum total protein), 406

strategic leadership team, 1183–1187, 1188t. See also leadership

straw processing, 752–753

stream exclusion, 36

streptococcal mastitis, 897–898, 904

Streptococcus agalactiae clinical signs of infection, 890

dry cow therapy for, 945

farm culture, 1185–1187

human health and, 894

infection process, 910

in mastitis, 887, 897–898, 904

mastitis treatment for, 892, 934, 944

in pastured systems, 924

sources and transmission, 887–888

Streptococcus dysgalactiae, 924

Streptococcus spp. antibiotics for, 938, 939f

mastitis and, 887–889, 890, 892, 897–898, 904, 910, 917

in raw milk, 957

udder health and, 342–343

uterine health and, 535

Streptococcus uberis economics of treatment, 944–945

in environmental mastitis, 898

in pastured systems, 924–925, 927

vaccine for, 904, 917

stress. See also cold stress; heat stress

acute stress response, 1027
See subacute ruminal acidosis (SARA).

Strongyloides stroma, 816, 819, 819

See subclinical endometritis.

See also mastitis; subclinical ketosis (SCK), 794–795

subclinical hypocalcemia (SCH), 803, 1077

subclinical ketosis (SCK), 794

subclinical mastitis. See also mastitis; mastitis treatment
cost effectiveness of treatment, 944–945, 1186–1189
definition of, 934, 961
identification of, 1285
identifying successful treatment outcomes, 942
severity scores, 934–936, 934f, 934f, 935f, 936f
treatment at dry-off, 903, 945–947, 946f
treatment during lactation, 944–945
sugars, 641, 645–646, 741
sulfadimethoxine, 938
sulfate, in water, 618
sulfonamides, 938, 1121

sulfur
dietary intake, 660f, 670f, 671f, 677
excess, 746
functions, 677
in hoof health, 1096
supplementation, 441

sulfur amino acids, 8
sun angles, 95–96

supernumerary teats, 1043–1044
superovulation, 584–585, 584f, 601, 602–605, 603f, 604f, 604f
superoxide dismutase, 672, 681, 683, 912
supplements
amino acids, 440–441, 632, 705, 912
biotin, 694–695, 707
calcium, 1079–1080
β-carotene, 690–691, 692f, 694f
deled and organic mineral, 441, 684
choline, 696, 707

cobalt, 677–678
conjugated linoleic acid, 659f, 661, 705
dry fat, 657f, 658–659
fat, 655–656, 661–664, 705, 805–808, 807f
fiber, 742
fish oil, 662, 805
iodine, 441, 679
magnesium, 676–677, 926, 1081
in mastitis, 917–918
microminerals, 441, 684, 706–707
neutral detergent fiber, 742
niacin, 695, 707
phosphorus, 441
progesterone, 585–586, 587f
selenium, 682
storage and handling of, 697
storage of, 441
vitamin A, 690
vitamin D, 692
vitamin E, 693–694

surgery
abdominal, 1046–1047
claw amputation, 1044–1045
eye enucleation, 1046–1047
somatic cell count and, 1029

reproductive performance and, 580–582, 582f, 593, 1028
somatic cell count and, 1029
vaccination and, 1090

theriogenology, 1120

strona, 816, 819, 819f
Strongyloides spp., 1117, 1118–1119
subacute ruminal acidosis (SARA). See also acidosis, ruminal

subclinical endometritis. See endometritis
subclinical hypocalcemia (SCH), 803, 1077

sustainable growth, 12–15. See also sustainable growth, whole-farm
technical efficiency measure, 1171–1172
tea-end hyperkeratosis (TEHK), 855, 857f, 858, 868

teats
amputation of, 1044–1045, 1048f
bacterial invasion through, 909, 911
barrier dips, 903
canal, 908–909, 908f
cisterns, 908, 908f
ducts, 909
extra teat removal, 1043–1044
post-milking closing of, 930
quarter milking, 870, 1044–1045
skin integrity, 856, 924, 926
teat canal keratin, 855, 856f, 857f, 858, 868, 908–909
teat dips, 138, 855, 902–903, 909
teat sealants, 927–928
teat sprays, 877–878, 929–930
tissue congestion, 855–856, 857, 858f, 863–864
washing, 138–140, 870
teat spray robots, 877–878
technical efficiency measure, 1171–1172
technician nonreturn rates, 569–570

TEHK (teat-end hyperkeratosis), 855, 857f, 858, 868

temperate and cold climates

bottlenecks in design, 79–80
capital resources, 77–79
cold stress and nutrition, 72, 73f, 397, 403, 412–414, 438
INDEX

material flow, 280–284, 280f, 281t, 282t, 283t
mixers for, 285, 288–289, 292–295, 293f, 294t
particle size in, 427, 437
in pasture-based systems, 110–113
post-weaning, 150
for transition calves, 427
vitamin supplements in, 697
“TMR savers,” 736
TMR variation control, 752–764. See also feed variability; mixing consistency
delivery timing, 764, 789–791, 789f
distribution in bunk, 764–768
feed software programs, 768
grain processing, 733, 756f
hay and straw processing, 752–753
mixer maintenance and selection, 768–769
on-farm method to check consistency, 754, 758t
on-farm premixing, 753–754, 757f, 758f, 760–761
push-out levels and bunk adjustments, 768, 792, 793f
silage blending, 752, 753f, 754f, 755f, 756V, 757f
silage feed-out management, 752
silage sampling, 752, 755f
sources of variation, 718, 718t
time-lapse video of feeding behavior and access, 767–768
timing of feed, 766–767
TNFo (tumor necrosis factor-α), 536, 807–808, 913
TOF (time-of-flight) cameras, 1288
toll-like receptors (TLR), 536
top-flow principle, in milking, 870
total chore time throughput, 876
total coliform bacteria, 619–620
total dissolved solids (TDS), 413, 617–618, 618t
total maximum daily load (TMDL), 36–37, 38
total mixed rations. See also feed; TMR variation control
composition of, 52
in dairy beef production, 150
delivery timing, 764, 789–791, 789f
feed efficiency and, 65
feeding frequency, 788, 788f, 790–791, 791f
individual training/improvement plans, 1181
job descriptions in, 1190
key elements of, 1214
onboarding and orientation, 1197–1199
on safety, 751
that don’t always work, 1214
value of, 1213–1214
trans fatty acids, 655, 656, 659, 661, 1312
transforming growth factor α/β (TGF-α/TGF-β), 821
transition cow barn design, 223–238
bedded group pens, 234
bedded individual calving pens, 234, 235f
cow behavior in, 230
cow comfort in, 231–232
cow management group definition, 226–228
cow movement in, 235–236
designing for more than average need, 229–230
freestall design options, 232–234, 233f
implementation of, 237–238, 237f
management plan in, 224–226, 226f, 227f
minimizing grouping and moving stress, 230–231
number of cows per group, 228–229, 228f, 229f, 230f
pen arrangement, 234–235, 236f
prevention overcrowding, 794
special needs cow management groups, 228
steps in, 224–225, 225f
transition cow period, 223–224, 225f
worker safety, 236
transition cow management. See also transition cow barn design
animal restraint, 236
Bud Box design, 236
combing ling primiparous and multiparous cows, 1072
designing for cow behavior, 230
drover lanes, 233f, 236
economic impact of diseases, 1069–1070
in farmstead site plan, 174, 237–238, 237f
feed space, 231
freestall cubic space, 231–232
group bedded pen design, 232–234, 233f
grouping and moving stress, 230–231, 1072
grouping in, 226–228, 229, 229f, 1072
heat stress abatement, 1072
herdsperson/veterinarian office, 237
housing system management plan, 174
immune regulation, 1072–1073
just-in-time pen management, 225, 226f
INDEX

1349

true negatives, 1258–1259
Trueperella pyogenes, 534–535, 536, 887, 923
true positives, 1258–1269
true pregnancy, 557
true variation, 714–716, 746
trust, building, 1219, 1232–1233, 1232f,
1233f
tumor necrosis factor-α (TNFα), 536, 807–808, 913
tunnel-ventilated freestall barns, 93, 93f, 94f, 241–242, 243f
TVOR. See transvaginal oocyte retrieval
Twin Falls, Idaho, organic dairy in, 123
trichomoniasis, 1116
Trichomonas fetus, 1116, 1121
Trichomonas vaginalis, 1121
Trichuris spp., 1116, 1119
triclabendazole, 1123
trithiomolybdates, 618
truck scales, 291
dairy income summaries, 1154f
dairy statistics in, 49f
dairy trade patterns and growth, 314–316, 315f, 316f
early dairy industry, 308–309
family ownership of dairies, 84
genetics industry, 334
as milk exporter, 12
milking parlor trends, 872–873, 873f, 874f
milk payment system, 1169
milk production trends, 335, 335f
somatic cell count trends in, 951
water shortages, 86
United States Department of Agriculture (USDA)
Agricultural Marketing Service, 321–322, 322f
National Organic Program, 116, 123
Risk Management Agency, 1145
unpaid labor hours, 459
unsaturated fatty acids. See also polyunsaturated fatty acids
diet-induced milk fat depression and, 662–663, 663f, 664, 783, 1311–1312
dry matter intake and, 661–662
feed sources of, 658–659, 741, 741f
metabolism of, 659–660
in milk, 1307, 1309–1312
reproduction and, 705, 799, 805
ruminal fermentation and, 655, 1311
sample stability, 657
subacute rumen acidosis and, 1095
trans intermediates from, 655, 656, 661, 1312
urania, 619
urea
in blood and milk, 809
milk urea-N, 636, 640, 762, 1306–1307, 1311
production and disposal of, 634, 636
urea fertilizers, in carbon footprint, 20
Ureaplasma spp., 535, 890
urine pH, 1071
USDA. See United States Department of Agriculture
uterine abnormalities, 497, 498f
uterine disease
adaptive immunity, 537
bacterial pathogenesis of, 534–536
epidemiology and, 538–539, 540f
fertility and, 537–538
genetics and, 538
hygiene and, 539
immune response, 536–538
nonesterified fatty acids and, 536–537
normal involution, 534
postpartum incidence of, 533
prostaglandin F2α in treatment of, 528
in seasonally calving herds, 528
utilities

u
udder edema, 676
udder health
feed timing and, 792
milking machine management and, 858, 859–860
scoring chart, 859, 860f
selection for, 342–343, 359, 360, 381, 1173
spray robots, 877–878
tail docking and, 1039
teat closing and, 930
teat keratin, 855, 856f, 857f, 908–909
udder stimulation, in milk ejection, 843–844, 844f, 860–861
ultrafiltration (UF), 217
ultrasound-guided oocyte retrieval, 584, 602, 603f, 604–606
umbilical care, 402–403
undigested NDF, 642–643
uniform prices, 322
United Egg Producers (UEP) certification, 997, 998
United Kingdom (UK)
animal welfare programs in, 993, 996, 997–998, 1000, 1001
on pain relief for castration, 1043
United States
animal welfare programs in, 993–994, 996, 997
cost of milk production, 303–304, 303f, 305f
dairy business models, 313–314
dairy cow farm sizes, 83
dairy employees, 85
as dairy exporter, 312–315, 312f, 313f
dairy genetic evaluation system, 334

labor-efficient cow movement, 235–236
managers in, 224–225
milking parlor access, 234–235, 235f
monitoring and recording of disease events, 1069–1069
overcrowding, 229–230, 230t, 794, 1062, 1073
parasite control, 1125–1126, 1126f
pen arrangement in, 232, 234–235, 236f
postcalving metabolic disorders, 1077–1083, 1078t, 1083f
resting space, 231
rumination monitoring, 1073
socially stable group pen management, 226, 227f
special needs cow management groups, 228
transition cow period, 223–224, 225f
walking space, 232
water space, 232
worker safety, 236
transition cow nutrition, 699–710
body condition scores, 701
carbohydrates in, 702–703
for close-up cows, 1071–1072
clostridial silage and, 736
direct-fed microbials, 708
dry matter intake changes, 1067–1068, 1068f
for far-off dry cows, 1070–1071
fats in, 705
feed additives in, 707
feeding management, 1071–1072
feed intake, 700–701
feeding management and, 1071–1072
grouping cows for, 700
guidelines for, 709f
hypocalcemia prevention, 1078–1079
from late gestation to early lactation, 1057–1058
minerals in, 701, 705–707, 1071
physiological changes in, 1067–1068, 1068f
postpartum, 802, 1072
protein and amino acids in, 703–705
transition period definition, 699–700
vitamins in, 707
transportation access, 96
transport of cows, 1006, 1015
transrectal palpation of the uterus, 511
transrectal ultrasonography, 511, 513, 515, 1269, 1272
transvaginal oocyte retrieval (TVOR), 393
trematodes, 1119–1120, 1119f, 1123, 1124–1125
Trichomonas fetus, 1116, 1121
Trichomonas vaginalis, 1121
Trichuris spp., 1116, 1119
triclabendazole, 1123
trithiomolybdates, 618
truck scales, 291

U
INDEX

in carbon footprint, 24

costs of, 461

milking center design and, 190–191

in site selection, 96

V

vacations, 1207

vaccines

adverse reactions, 1090–1091

attenuated, 1088–1089

booster importance, 1090

of calves, 452, 465

costs of, 466, 469

in dairy beef production, 150

efficacy of, 1088

for Escherichia, 449, 451, 915–916
genetically engineered, 1089

of heifers, 466

for Johne’s disease, 1110

level of disease challenge and, 1087

list of available, 1088

Lysigin, 893, 916–917

for mastitis, 892–893, 903–904, 915–917

maternal antibody interference and, 1090

minimum dose, 1089

modified live, 1088–1089

for Mycoplasma bovis, 917

for Neospora parasites, 1122

in organic dairy production, 116, 120

program design, 1089

for Staphylococcus aureus, 892–893, 916–917

Startvac, 893

for Streptococcus uberis, 917

stress impacts, 1090

timing of disease and, 1087

vaginal stimulation, oxytocin release and, 844, 844

vaginal temperature monitoring, 1280

valuation methods, 1133

variability in feed. See feed variability

variable costs, 314

variance, 714

variation, in data, 550, 714, 715

veal production, 145

ventilation. See also naturally ventilated (NV) facilities

axial circulation fans, 242

of calf and heifer facilities, 258–259, 451, 476

in cold weather, 239

compromise design, 190

cross-ventilation design, 91, 91f, 92f, 179–181, 180

in disease prevention and control, 451 evacuation cooling, 243

high-volume low-speed fans, 241, 242–243, 245

mastitis and, 900

mechanical, 78–79

positive-pressure tubes, 451

of transition cow facilities, 232

tunnel ventilation design, 93, 93f, 94f, 177–179, 179f, 241–242, 243

utilities and, 190–191

vertical screw mixers, 292, 293

very low density lipoproteins (VLDL), 696

VFA. See volatile fatty acids

vigor assessment, in newborn calves, 443, 445

“veterinarian managers,” 85

veterinarians

in mastitis treatment, 936, 940

review of SOPs for euthanasia, 1014

veterinarian office, 237

veterinary-client-patient relationship, 937, 1041

VFA. See volatile fatty acids

vigor assessment, in newborn calves, 399–400, 401

VIGOR score, 400, 401

Viking Red breed, 371, 371

VLDL (very low density lipoproteins), 696

VMD (ventilation management design), 231, 232

VFV (veterinary facility ventilation), 231

VLP (vaccine-like particle), 1112

VME (veterinary medicine establishments), 1087

Volvariella volvacea, 710

voluntary waiting period (VWP), 510, 550, 553, 554–555

W

walking surfaces, 244–245, 245

walk-over load cells, 1296

waste milk, 410, 412, 413, 448, 458–459, 461

wastewater, from the milking center, 220

water. See also drinking water; water quality

dehydration, 942, 1006, 1015, 1018

functions of, in cows, 612–613

global water supply, 611

groundwater, 612, 612

in hot climates, 86–87

hydrologic cycle, 612

in lactogenesis, 822

quantity of, 86, 614

requirement for, 105

in selecting herd size, 186

stray voltage in delivery of, 620

temperature of, and heat stress, 613

treatment methods, 620

water distribution systems, 243–244

Water Framework Directive, 37, 38

water quality, 33–42, 614–620

antibiotics in, 39–42, 39

best management practices and, 34–36

for calves, 413

digestibility and, 643, 643, 643f

drinking water standards, 33, 616, 617

endocrine disrupters, 41–42

fencing of waterways, 105

of groundwater, 612

iron, 618–619

in locating dairies, 86–87

manure and, 33–34, 35f, 211–212

in mastitis prevention, 930

micropollutant fate and transport, 41–42

minerals, 86–87, 616–617

nitrate, 33, 619, 619

nutrient imbalance variations, 34, 35f

nutrient management planning, 34

problem analytes in, 614, 615, 615

regulatory approaches, 36–38

source controls, 35–36

speciation in, 614–615

standards for, 33

sulfate, 618

total coliform bacteria, 619–620

total dissolved solids, 413, 617–618, 618f

treatment methods, 620
INDEX

waterborne pathogens, 619–620
water shortages, crop restrictions from, 84
water-soluble carbohydrates (WSC), 48, 108
water supply, in selecting herd size, 186
weak cattle, 1015, 1024f. See also compromised cattle
weaning calves
 chopped forage in, 425–426, 426t
diet transition, 397
environmental temperature and, 412, 413–414
 maintaining growth in, 424, 425f, 464f
milk replacers in, 412–413, 482
nonsaleable milk in, 410t, 412, 413, 448, 458–459
starch content in, 424–425
weaver condition, 363
weighing errors, 282–284, 283t, 284t
Welfare Quality project, 994, 996
wet calf value, 458, 466, 467t, 469–470, 471f, 472, 472f
wheat staggers. See hypomagnesemia
whey products
 FMMO pricing, 322, 322t, 323t
 international trade trends, 316f
 in TMR mixer, 760f, 761–762, 764f
white line disease, 1098–1099
white muscle disease, 681
Whole-Farm Balance Nutrient Education Tool, 201
whole-farm nutrient balance. See nutrient balance, whole-farm
Whole-Farm Nutrient Balance software, 201
wide swathing, 724
wilting period, for silage, 724
wind
 energy requirement of heifers and, 438
 in naturally ventilated facilities, 258
 speed and direction of, 95, 240, 258
 windbreak around feed center, 287, 288f
winter tetany. See hypomagnesemia
Wisconsin, milk production, 309, 309f, 311, 311f, 312f
wood pulp, 740
workers. See employees
working capital, 1136
work routine time, 874–875, 875f, 875t
World Organisation for Animal Health (OIE), 991, 994
wrapped bale silos, 729t, 730–731
WSC (water-soluble carbohydrates), 48, 108
X
 X-bar charts, 719
 xylose, 641
Y
 yeast, 682, 708
 yield factor, in pricing, 322
 yoghurt, 327
Z
 zinc (Zn)
 copper and, 678
deficiency and toxicity, 683
from diets, 668t, 669t, 670t, 671t
functions, 683
in hoof health, 1096, 1100
mastitis and, 917
requirements, 678
zinc sulfate, in footbaths, 1100