Important Message

In the event that protestors interrupt the meetings, please ignore them. Their goal is to attract attention and any attention you give them will only help their cause. Convention staff have a plan in place to handle these situations, and they depend on our cooperation. If members of the media approach you for an interview about the disturbance, please politely decline and direct them to the convention’s media room, where spokespersons will be available.

Thank you for your cooperation.
Welcome to ADSA 2017!

On behalf of the American Dairy Science Association®, we welcome you to Pittsburgh, Pennsylvania, and the 2017 ADSA Annual Meeting: Integrating Dairy Science Globally. We have a week full of dairy science, and many opportunities exist for networking and socializing with old and new friends. Join us on Sunday night for the opening session and keynote address by Ethan Schutz. Ethan is president of The Schutz Company, and “helps people navigate the human side of business.” He will be presenting material from *The Human Element*. The opening session will be followed by a reception for all attendees. The reception will have a great selection of finger foods and a cash bar—and it’s a great opportunity to network. Please plan to stay a while and talk with your colleagues. Pre-meeting events include three workshops that require a registration fee: Helping Students Learn, The Impact of Raw Milk on Dairy Products, and Nutrition Models. Additional pre-meeting events are the Lactation Symposium, a Graduate Student Symposium featuring Ethan Schutz; and the late-breaking abstracts session. After the meeting, we will have the Mixed Models workshop and the Teagasc/Moorepark University College Cork Cheese Symposium. These post-meeting events are well worth the ticket fees.

More than 1,300 abstracts were submitted and 20 symposia are scheduled for the meeting. This meeting is truly all dairy. Please take time to peruse the program and use the MyProgram app and the schedule at a glance to plan out your week. We know you can’t be everywhere at once, so we are recording all of the symposia at this meeting to be made available to you later. This means that you can make plans to see some now and see some later. On that note, there are a lot of posters too! We are offering poster presenters the ability to upload a digital version of their poster, and posters uploaded in this way will be available for viewing by attendees at any time during the meeting at kiosks in the poster area. If you are a poster presenter, please plan to share your poster this new, additional, and optional way.

As well as our days, our evenings throughout the meeting are busy. In addition to the Sunday Opening Reception and Monday Awards Program and Ice Cream Social, we have several receptions scattered throughout the program. Make sure to attend the Dale Bauman Recognition Symposium, Informal Milk Quality Session, or the Informal Calf Reception during the week. The evening programs have been designed to help you interact with other dairy scientists.

We are grateful to the many people involved in making this meeting a success, especially our exhibitors and sponsors. Their support is essential to the quality program that makes ADSA the most comprehensive gathering of dairy scientists in the world. A list of exhibitors and sponsors of this year’s meeting is available in this program book. Please take time to thank them if you see them during the meeting. And please make sure to take plenty of time to peruse the exhibits in the exhibit hall.

The ADSA Annual Meeting program committee has worked very hard to organize an excellent program. Our thanks to the overall program committee: Ignacio Ipharraguerre (overall chair), Cathy Williams, Mike Brouk, Tom McFadden, Trish Dawson, and Stephanie Clark for their efforts in bringing forth this outstanding program. We also thank the many others who contributed to this huge undertaking, including all the section chairs, the FASS staff, the ADSA Board of Directors, and the ADSA executive director, Peter Studney.

Finally, thank you for attending ADSA 2017 and making it a successful meeting. This meeting is absolutely dependent on people sharing their recent science. There is no other way to get personal, deep, and interesting feedback on your work from experts in research execution and field application. The meetings are an important complement to the *Journal of Dairy Science* for the growth and development of individual science papers and for the individual scientists that make up our community. For many of you, this will be your first all-dairy meeting, so the scale is a bit more intimate. I am sure you will find the meetings both intellectually and socially stimulating. Now let’s get to it!

Lou Armentano
ADSA President
General Meeting Information

Location

The 2017 ADSA Annual Meeting will be held at the David L. Lawrence Convention Center and surrounding hotels in Pittsburgh. The post-conference Teagasc Moorepark/University College Cork Cheese Symposium will be held at the Omni William Penn Hotel.

Schedule of Events

Pre-conference symposia and workshops are scheduled for Sunday, June 25, and the opening session will be held on Sunday evening; scientific sessions will begin Monday morning, June 26, and run through noon on Wednesday, June 28. Post-conference symposia will be held on Wednesday afternoon and Thursday; please check the scientific program starting on page 41.

Opening Session

Please join us at the opening session for a keynote address by Ethan Schutz, president of The Schutz Company, titled *Can't We Just Get Along? Keys to Working Well with People*. After the session, join us for a book signing and food and drink at the opening reception.

Program Format for 2017

<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poster sessions (Monday and Tuesday)</td>
<td>7:30 am – 9:30 am</td>
</tr>
<tr>
<td>Morning scientific sessions</td>
<td>9:30 am – 12:30 pm</td>
</tr>
<tr>
<td>Lunch break</td>
<td>12:30 pm – 2:00 pm</td>
</tr>
<tr>
<td>Afternoon scientific sessions (Monday and Tuesday)</td>
<td>2:00 pm – 5:00 pm</td>
</tr>
</tbody>
</table>

Meeting rooms will be equipped for electronic presentations and preloaded sessions. Free Wi-Fi is available in all public areas.

Registration Hours

Registration will be located in the Concourse near Exhibit Hall B in the Convention Center. Registration hours are as follows:

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturday, June 24</td>
<td>3:00 pm – 5:00 pm</td>
</tr>
<tr>
<td>Sunday, June 25</td>
<td>7:00 am – 7:00 pm</td>
</tr>
<tr>
<td>Monday, June 26</td>
<td>6:30 am – 5:15 pm</td>
</tr>
<tr>
<td>Tuesday, June 27</td>
<td>7:00 am – 5:15 pm</td>
</tr>
<tr>
<td>Wednesday, June 28</td>
<td>7:00 am – 12:00 pm</td>
</tr>
</tbody>
</table>

Important Phone Numbers

<table>
<thead>
<tr>
<th>Hotel</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omni William Penn Hotel</td>
<td>(412) 281-7100</td>
</tr>
<tr>
<td>Pittsburgh Marriott City Center</td>
<td>(412) 471-4000</td>
</tr>
<tr>
<td>Westin Pittsburgh</td>
<td>(412) 281-3700</td>
</tr>
<tr>
<td>Drury Plaza Pittsburgh</td>
<td>(412) 281-2900</td>
</tr>
</tbody>
</table>
Media Room

A media room (Room 335) will be available throughout the meeting to provide a space for media representatives to work. Meeting press releases will be available there. Complimentary registration is available for members of the media. For more information, please contact adsa@adsa.org.

Media Check-In

Please check in at the Registration Desk in the concourse of the David L. Lawrence Convention Center.

Hospitality Lounge

The hospitality lounge will be located in Room 332 in the Convention Center. This lounge will offer attendees an area to relax, network, and catch up with friends.

Business Center

There is a FedEx Office located close to the David L. Lawrence Convention Center, at 960 Penn Avenue; phone (412) 391-2014. Use of their services is at your own expense.

Job Resource Center and Interview Room

The Job Resource Center is located in the exhibit hall. Job announcements and CVs will be organized into the following categories for posting: Animal Behavior and Well-Being; Animal Health; Animal Breeding; Extension; Food Safety; Food Science; Forages and Pastures; Genetics; Growth and Development; International Animal Agriculture; Lactation; Pharmacology and Toxicology; Physiology and Endocrinology; Production and Management; Ruminant Nutrition; and Teaching.

An interview room (Room 336) is available for company representatives to interview candidates during the meeting. Reservations are required, so please visit https://secure.fass.org/ADSA17_interview_room_reservations.asp for more information and to book a time. We will publish your reserved days/times, a brief description, and instructions to potential candidates for contacting you on the ADSA mobile website at m.adsa.org. It is the responsibility of the employers and potential candidates to make arrangements to meet. Note: you must be registered for the 2017 ADSA annual meeting to make interview room reservations.

Camera, Video Camera, and Cell Phone Policy

Use of cameras, video cameras, tablets, or smartphones (for calls or audio/video recording) is prohibited during oral and poster presentations to minimize disruption and unauthorized dissemination of data. Anyone found in violation of this policy will be asked to leave the session.

ARPAS Continuing Education Units

The 2017 ADSA Annual Meeting has been approved for up to 21 continuing education units (CEUs) for the American Registry of Professional Animal Scientists (ARPAS) certification requirements. Check the schedule of events for times and location of the ARPAS exams.

Social Media

Follow the ADSA Annual Meeting on Twitter (@ADSAMtg) using the official conference hashtag, #ADSA2017. Tweet about interesting posters and presentations, social events, or fun things to do and see while in Pittsburgh.
Presentation Information

Oral and Invited Speakers: Onsite Upload Information

Oral sessions will begin at 9:30 am on Monday, Tuesday, and Wednesday.

Onsite upload: Onsite presentation upload will be available; files can be delivered to the Preload Room (Room 313) at the convention center (Saturday: 3:00 to 5:00 pm; Sunday to Tuesday: 7:00 am to 5:00 pm; Wednesday: 7:00 am to noon). **Presentations must be uploaded by 5:00 pm on the day before your scheduled presentation. Files will not be accepted via email. No presentations will be loaded while the session is in progress or between presentations.**

Speaker Ready Room

The Speaker Ready Room is located in Room 314 of the David L. Lawrence Convention Center. This room will be available for speakers from 7:00 am to 5:00 pm on each day of the meeting.

Poster Presentations

We have dedicated a two-hour block on Monday and Tuesday to poster presentations. The “open poster” sessions will be from 7:30 to 9:30 am in Exhibit Hall B. Coffee and pastries will be served in the hall from 8:00 to 9:00 am on both days.

Each poster will be available for public viewing for the entire day, with the presenting authors in attendance during the open posters time (7:30–9:30 am). All posters must be mounted on the board 30 minutes before the beginning of the day’s session (poster sessions begin at 7:30 am so posters must be mounted on boards by 7:00 am) and must list the abstract number and corresponding day. The exhibit hall will open at 6:30 am on Monday and Tuesday. **Posters must be removed after 5:00 pm each day.** Any posters remaining after 5:30 pm each day will be removed by the convention center staff and discarded.

Each poster board area is **48 inches high and 96 inches wide.** Use of this space is determined by the presenter, with the following exceptions: the top of the poster space must include the abstract number with corresponding letter of the day it is being presented, title, authors, and affiliations. The lettering for this section should be at least 1 inch high.

Locating the Correct Poster Board

Each poster board number corresponds to the abstract number as noted in the program. For Monday posters an “M” and for Tuesday posters a “T” precedes the board number.

New! Digital Poster Upload and Viewing

In addition to the traditional poster sessions and display, poster presenters are encouraged to upload a digital version of their poster (PDF) in advance of the meeting or onsite, that can be viewed at any time during the meeting at specially designated kiosks located in the lounge area of Exhibit Hall B.

Mobile MyProgram—An Easier Way to Plan Your Schedule

The MyProgram planner is now mobile! Mobile MyProgram provides ADSA 2017 attendees with convenient access to the conference schedule via most mobile devices. With Mobile MyProgram, the ADSA 2017 program is more convenient than ever. Mobile MyProgram includes a personal scheduler for symposia, sessions, and events you wish to attend, and you can access and share abstracts for all presentations, read invited speaker bios, find exhibitors, and more, making it easier than ever to plan your meeting while on the go. Visit m.adsa.org to access Mobile MyProgram today!
Pittsburgh Information

Transportation in Pittsburgh

Pittsburgh International Airport (PIT) is a world-class facility that serves more than 8 million passengers annually and flies to 56 domestic and international destinations on 13 commercial carriers with more than 170 daily flights. Once in Pittsburgh, you can choose from a large selection of rental vehicles, taxis, limousines, and public transportation. Travel to Pittsburgh by car is also convenient as Pittsburgh is within 500 miles of more than half the US population. It’s under 6 hours by car or train to 9 states, District of Columbia, and Canada.

Downtown Pittsburgh is approximately 19 miles from Pittsburgh International Airport (PIT). One-way fare between the airport and downtown is about $40. Start networking by sharing a cab with other meeting attendees to save expense; just print out the sign available at https://www.adsa.org/2017/hotel.asp. There are also many shuttle services available to choose from. ADSA has negotiated with one for a special discount that is valid between June 18 and June 30, 2017. Book online using our exclusive discount code: 9DCKY to save $4.00 off the round-trip SuperShuttle rate or $6.00 off round-trip ExecuCar Private Sedan rate. To book either service, go to www.supershuttle.com or use the SuperShuttle app and enter your discount code or copy this landing page where the code is preloaded: http://www.supershuttle.com/default.aspx?GC=9DCKY. The discount is valid via web or app only and gratuity is not included. Note: A $2.00 booking fee will apply to phone reservations that are booked by a reservation agent.

Pittsburgh Sightseeing Options

With 90 neighborhoods and districts, Pittsburgh is a city to be explored one delightful section at a time. What’s most amazing about the city is the people that make up each of these neighborhoods. Pittsburgh’s topography has played a large part in how each neighborhood was developed. Start with a dynamic Downtown, then cross the famous three rivers — the Allegheny, Monongahela, and Ohio — to find unique areas shaped by more than the region’s beautiful topography. Natural geographic boundaries do their part to define, but Pittsburgh neighborhoods are also known for the clusters of attractions they offer.

Visitors can plan their itineraries by the points of the compass, focusing in turn on attractions Downtown, the Strip District, on the South Side and at Station Square, on the North Shore, and in the East End, including Oakland. Say hello to everyone you meet, and you’ll be surprised at what you will learn. Pittsburgh cheers for three major league sports teams, the Penguins, the Pirates, and the Steelers. You can catch a Pirates game while you’re in town for the ADSA Annual Meeting.

The ADSA Annual Meeting will be held at the David L. Lawrence Convention Center. As the world’s first certified green convention center, the building symbolizes this region’s commitment to sustainable development and environmental awareness. This innovative structure connects the urban city to the waterfront overlooking the Allegheny River. Boasting breathtaking views of the North Shore and Downtown Pittsburgh from the concourses, balconies and terraces, the Center is in the heart of the Downtown business and cultural districts. Hotels, retail stores, theaters, and many unique restaurants are within easy walking distance. There is plenty to do in Pittsburgh and the surrounding areas, so start exploring now at www.visitpittsburgh.com.

Check the Pittsburgh area map on page 17 for attractions close to the Convention Center and meeting hotels.
Special Events

Coffee and pastries will be served in the exhibit hall on Monday and Tuesday from 8:00 to 9:00 am. Please make time to talk with our exhibitors while you are enjoying complimentary coffee and pastries!

ADSA Student Tour: Pittsburgh Zoo & PPG Aquarium
Saturday, June 24
12:30 – 4:30 pm
Tickets: $18

The Pittsburgh Zoo & PPG Aquarium offers students an inside glimpse behind the scenes with the zoo’s animals. With a backstage pass, participants will explore animal holding areas and learn about animal care in a zoo environment. Ticket price includes zoo program, admission, and round-trip transportation and is offered to both undergraduate and graduate student members.

ADSA Undergraduate Student Midday Mixer and Lunch
Sunday, June 25
12:00 – 1:00 pm
Convention Center, Ballroom B

Join your fellow dairy clubs for a fun hour of getting reacquainted and making new friends, and get to know your 2017–2018 Student Affiliate Division (SAD) Officer candidates. Ticket price includes lunch. Note: Registration is limited to ADSA undergraduate student members and advisors.

ADSA Graduate Student Division Symposium: Building Strong Work Relationships to Be Effective
Sunday, June 25
2:00 – 5:00 pm
Convention Center, Room 306

Join us for an exciting interactive workshop with the 2017 ADSA Annual Meeting keynote speaker, Ethan Schutz. Much of our work gets done by working with other people. Learn about human dynamics at work and how to get things done, solve problems, and collaborate with other people. This is what they don’t teach you in school! Space is limited, so sign up early. Attendees will receive a copy of the book upon which the session is based, titled “The Human Element.”

Dairy Quiz Bowl Final Round
Sunday, June 25
5:30 – 6:00 pm
Convention Center, Room 325

University teams from across North America will compete in the ADSA-SAD Dairy Quiz Bowl. The event gives schools an opportunity to demonstrate their knowledge of dairy production, processing, and ADSA history. The Student Affiliate Division (SAD) invites you to join them for the excitement of the final round of competition as the top two schools go head to head for the title of 2017 Dairy Quiz Bowl Winning Team.

Opening Session and Reception
Sunday, June 25
7:30 – 8:45 pm; 8:45 – 10:00 pm
Convention Center, Ballroom A and Gallery

Come help us kick off the 2017 ADSA Annual Meeting at the opening session. Then, wind down the evening by joining us after the session for food and drinks and some long-awaited socializing time with colleagues and friends.

ADSA Undergraduate Student Poster and Paper Competitions
Monday, June 26
Convention Center

Support the future of ADSA—plan time in your schedule to visit the undergraduate posters on Monday morning and the oral presentations on Monday morning and afternoon. See program for complete details.

Companion Event 1: Beautiful City of Pittsburgh Tour
Monday, June 26
10:00 am – 2:30 pm
Tickets: $60
Meet at Registration

This tour shows you a few of the best sites of Pittsburgh. Enjoy the Carnegie Museum of Art, lunch at the iconic Primanti Brothers in the famous Strip District, and a beautiful tour of the city of Pittsburgh, starting with a ride up the Duquesne Incline to enjoy one of the top 10 views in the United States, so named by USA Today. Then, enjoy a ride around our beautiful north shore and sports stadiums, and into our stunning downtown and historic Strip District. Tour includes transportation, lunch at Primanti, guide, ride on the Duquesne Incline, and bottled water. Preregistration for this event is required. Register early—capacity is limited!

ARPAS Exam
Monday, June 26
10:30 am – 12:30 pm; 2:00 – 4:00 pm (2 opportunities)
Convention Center, Room 307

The American Registry of Professional Animal Scientists (ARPAS) provides certification of animal scientists through examination, continuing education and commitment to a code of ethics, and disseminates applied scientific information through publication of a peer-reviewed journal, The Professional Animal Scientist. Take advantage of this tremendous opportunity to become ARPAS certified.

ADSA Graduate Student Division Career Insights Lunch
Monday, June 26
12:30 – 2:00 pm
Convention Center, Room 308

New this year, join us for lunch and interact with a diverse panel of academia and industry professionals, and even a few past GSD members! Bring your questions to the event as panel members will field questions related to their experience moving from graduate school to the professional world. This lunch is intended to give attendees an informal environment in which to inquire about each professional’s personal journey and the challenges they encountered along the way. A $10 registration fee is required and a boxed lunch is included.

SAD Undergraduate Career Roundtable Lunch
Monday, June 26
12:30 – 2:00 pm
Tickets: $10
Convention Center, Room 304-305

This year we’ve added lunch to this already successful SAD program. It is conveniently scheduled during the lunch break on Monday, so students will have the opportunity to dine and network with professional members representing a wide array of careers in the dairy industry. They will learn about careers in the industry, get useful tips on planning for their careers, and much more. Students are encouraged to dress professionally (business casual or better) and bring
several copies of their résumés. Students should also plan time to visit industry reps in the exhibit hall for information about internships and job opportunities.

ADSA Awards Program
Monday, June 26
7:00 – 8:00 pm
Westin Hotel, Allegheny Ballroom

All meeting participants, families, and friends are welcome to attend the 2017 ADSA awards program. Please join us at this special event to recognize and congratulate the 2017 award winners.

Ice Cream Social
Monday, June 26
8:15 – 9:30 pm
Westin Hotel, Allegheny Foyer

All meeting participants, families, friends, award winners, and award donors are invited to join us for the always-popular ice cream social.

SAD Riverboat Cruise: Gateway Clipper
Monday, June 26
8:30 – 11:00 pm
Tickets: $25

With the hard work behind you, it’s time to celebrate! Join your fellow undergraduates aboard the Gateway Clipper for an evening cruise on Pittsburgh’s famous three rivers: the Monongahela, the Allegheny, and the Ohio, while enjoying the beautiful setting sun over the river city. Ticket price includes light snacks and sodas.

Fun Run, sponsored by Feed Components
Tuesday, June 27
6:30 am
Point State Park

Please join your friends at Feed Components for a 5K run in the beautiful city of Pittsburgh, as we run through Point State Park and enjoy views of downtown along the rivers.

Undergraduate Career Symposium—Science to Social: Connecting with Today’s Consumer Online
Tuesday, June 27
9:30 – 11:00 am
Convention Center, Room 304-305

It’s no surprise that many consumers today are disconnected from their food source. Join this digital workshop to learn how to use your credibility and online tools to reach consumers with accurate information about dairy. You’ll walk away with new techniques and ready to share your story online. This program is open to all ADSA meeting attendees, including undergraduates. To help us plan, please register on the registration form.

Companion Event 2: Flavor of Pittsburgh Tour
Tuesday, June 27
9:45 am – 1:45 pm
Tickets: $70
Meet at Registration

Step aboard your bus at the convention center for a tour of the historic Market Square. Visit famed Pittsburgh food spots such as Nicholas Coffee, Prantil’s Bakery, Mancini’s Bread, Church Brew Works, and Enrico Bakery, the bakery featured in the film “My Bread, My Sweet.” The tour also includes a stop at the new Pittsburgh Market and the Olive Tap, and wraps up at Family Farm Creameries for ice cream. While a formal lunch is not included, the tour includes enough food to replace a meal. Preregistration for this event is required. Register early—capacity is limited!

ARPA Exam
Tuesday, June 27
10:30 am – 12:30 pm; 2:00 – 4:00 pm (2 opportunities)
Convention Center, Room 307

The American Registry of Professional Animal Scientists (ARPA) provides certification of animal scientists through examination, continuing education and commitment to a code of ethics, and disseminates applied scientific information through publication of a peer-reviewed journal, The Professional Animal Scientist (http://www.professionalanimalscientist.org/). Take advantage of this tremendous opportunity to become ARPA certified.

ADSA Undergraduate Student Awards Lunch
Tuesday, June 27
11:45 am – 2:00 pm
Convention Center, Ballroom B

Plan to attend this year’s Student Affiliate Division awards luncheon. The afternoon will be capped with the presentation of student awards and announcement of new SAD officers. Both students and professionals are encouraged to attend. This is a wonderful chance to get to know the next generation of the dairy industry.

ADSA Graduate Student Division Three-Minute Thesis Challenge
Tuesday, June 27
2:30 – 3:30 pm
Convention Center, Room 333

Graduate student members are encouraged to take part in the return of the Three-Minute Thesis Challenge. This event will test the competitors’ ability to quickly and concisely convey their research in a way that is understandable to all. Entry details will be released prior to the Annual Meeting, and competition will be limited to ten students selected by a panel of judges based upon strength of CV and a 100-word abstract describing the presentation. Everyone is invited to attend to watch these students compete for cash prizes and present their research in a fun and exciting way!

ADSA Graduate Student Division Business Meeting and Open Forum
Tuesday, June 27
3:45 – 4:30 pm
Convention Center, Room 333

In addition to greeting the incoming GSD officer team, attend this meeting to voice your ideas and opinions about ADSA graduate student activities. Learn about our upcoming events and enjoy conversations with your fellow dairy science graduate students.

ADSA GSD Mixer: Take Me Out to the Ballgame (Pirates vs. Rays)
Tuesday, June 27
7:00 pm
PNC Park
Tickets: $10

Enjoy a fun night of entertainment and networking with your fellow dairy science graduate students as we cheer on the Pittsburgh Pirates professional baseball team. Join us at PNC Park, a short 15-minute walk from the convention center, where GSD members will sit together in a reserved block to watch the game. A $10 registration fee includes your ticket to the game AND a $10 food voucher to use at the stadium. Whether you’re an avid baseball fan or not, attend to enjoy a night of fresh air, ballpark food, and a chance to network with other graduate students!
2017 ADSA Award Donors

ABS Global Inc.
Alltech Biotechnology Center
American Dairy Science Association
American Dairy Science Association Foundation
American Feed Industry Association
Cargill Animal Nutrition
DeLaval Inc.
Elanco Animal Health
Elsevier
Hoard’s Dairyman
International Dairy Foods Association

Kraft Heinz
Lallemand Animal Nutrition
Leprino Foods
National Dairy Council
National Milk Producers Federation
Novus International
Nutrition Professionals Inc.
Purina Animal Nutrition
Schreiber Foods
West Agro Inc.
Zoetis
Exhibit Schedule

Sunday, June 25
Set up exhibits ... 10:00 am – 6:00 pm

Monday, June 26
Exhibits open .. 8:00 am – 5:00 pm
Exhibits dismantled ... 2:00 pm – 5:00 pm

Coffee, milk, and pastries will be served from 8:00 to 9:00 am on Monday and Tuesday.
Thank you to Dean Foods for providing the milk.

Exhibit Hall B

To Registration

Exhibitor Lounge

Lounge and
electronic post-
viewing kiosks

Dean Foods

Exhibits

Posters

To Registration
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acumen Detection LLC</td>
<td>516</td>
</tr>
<tr>
<td>Adifo NV</td>
<td>411</td>
</tr>
<tr>
<td>Adisseo</td>
<td>109, 111</td>
</tr>
<tr>
<td>Ag Processing Inc.</td>
<td>219</td>
</tr>
<tr>
<td>Agarwal Group of Industries</td>
<td>119</td>
</tr>
<tr>
<td>Agri-King Inc.</td>
<td>413</td>
</tr>
<tr>
<td>Ajinomoto Heartland Inc.</td>
<td>113</td>
</tr>
<tr>
<td>American Dairy Science Association (ADSA)</td>
<td>417</td>
</tr>
<tr>
<td>American Registry of Professional Animal Scientists (ARPAS)</td>
<td>106</td>
</tr>
<tr>
<td>ANKOM Technology</td>
<td>217</td>
</tr>
<tr>
<td>Arm & Hammer Animal Nutrition</td>
<td>419</td>
</tr>
<tr>
<td>Balchem</td>
<td>319, 418</td>
</tr>
<tr>
<td>Bar Diamond Inc</td>
<td>318</td>
</tr>
<tr>
<td>BCF Technology</td>
<td>105</td>
</tr>
<tr>
<td>BIOMIN America Inc.</td>
<td>504</td>
</tr>
<tr>
<td>Bioprocess Control AB</td>
<td>218</td>
</tr>
<tr>
<td>BioZyme Inc.</td>
<td>116</td>
</tr>
<tr>
<td>Bruker Optics Inc.</td>
<td>404</td>
</tr>
<tr>
<td>Central Life Sciences</td>
<td>204</td>
</tr>
<tr>
<td>Chr. Hansen</td>
<td>110</td>
</tr>
<tr>
<td>Cumberland Valley Analytical Services</td>
<td>101, 200</td>
</tr>
<tr>
<td>Dairy Nutrition Plus</td>
<td>212</td>
</tr>
<tr>
<td>Dairy One Forage Lab</td>
<td>216</td>
</tr>
<tr>
<td>Dairy Records Management Systems</td>
<td>208, 210</td>
</tr>
<tr>
<td>DASCOR Inc.</td>
<td>316</td>
</tr>
<tr>
<td>Diamond V</td>
<td>301, 400</td>
</tr>
<tr>
<td>E.I. Medical Imaging</td>
<td>305</td>
</tr>
<tr>
<td>Elsevier</td>
<td>508</td>
</tr>
<tr>
<td>FASS</td>
<td>518</td>
</tr>
<tr>
<td>Feed Components</td>
<td>205, 304</td>
</tr>
<tr>
<td>Feedstuffs</td>
<td>409</td>
</tr>
<tr>
<td>Grober Nutrition</td>
<td>401</td>
</tr>
<tr>
<td>HerdStrong</td>
<td>512</td>
</tr>
<tr>
<td>Innovative Additives Inc.</td>
<td>405</td>
</tr>
<tr>
<td>King Techina Group</td>
<td>317, 416</td>
</tr>
<tr>
<td>Milk Specialties Global</td>
<td>500</td>
</tr>
<tr>
<td>Novus International</td>
<td>112</td>
</tr>
<tr>
<td>Origination Inc.</td>
<td>114</td>
</tr>
<tr>
<td>PortaCheck Inc.</td>
<td>104</td>
</tr>
<tr>
<td>Poultry Protein and Fat Council</td>
<td>510</td>
</tr>
<tr>
<td>SoyBest</td>
<td>201, 300</td>
</tr>
<tr>
<td>Stuhr Enterprises LLC</td>
<td>100</td>
</tr>
<tr>
<td>Topcon Agriculture</td>
<td>108</td>
</tr>
<tr>
<td>VetAgro Inc.</td>
<td>117</td>
</tr>
</tbody>
</table>

A special thank you to our 2017 ADSA Annual Meeting Exhibitors!
Acumen Detection LLC
6274 Running Ridge Rd
Syracuse, NY 13212
http://www.acumendetection.com
Booth(s): 516

Acumen Detection provides a complete solution for on-farm mastitis detection. Within 2.5 hours, you will be able to detect mastitis and know if it is a gram-negative or gram-positive pathogen. Detect Mycoplasma, Staph or Strep in 5 hours or less.

Adifo NV
Industrielaan 11b
9990 Maldegem
Belgium
http://www.adifo.com
Booth(s): 411

World market leader Adifo Software develops and services a unique range of feed industry-specific software tools for least-cost feed formulation, precise feeding, quality data management, ration calculation, cloud services and ERP. Six hundred customers in over 60 countries apply Adifo’s software to optimize their resources, to achieve optimal animal performance, to service their clients and to be more efficient and profitable. More than 90 dedicated employees, continuous input from users, over 40 years of experience and state-of-the-art technology guarantee innovative products that make a difference. Stay on top of the latest developments, trends and legislation in feed production. Check out www.feedformulation.com.

Adisseo
4400 N Point Pkwy, Ste 275
One Point Royal
Alpharetta, GA 30022-2429
http://www.adisseo.biz/
Booth(s): 109, 111

At Adisseo, we are nutritionists with a long tradition of applying our expertise to nutritional additives. We are dedicated to serving the animal production industry by helping premixers, feed manufacturers, and integrators to improve their performance and to become more competitive.

Ag Processing Inc.
12700 West Dodge Road
Omaha, NE 68154
http://www.aminoplus.com
Booth(s): 219

Ag Processing Inc., the largest cooperative soybean processor in the world, produces AminoPlus, the number one volume bypass soybean meal supplement in United States. The AminoPlus process utilizes soybean meal to provide high amino acid quality, rumen bypass, and intestinal digestibility without the addition of chemicals or non-soybean components.

Agarwal Group of Industries
15-1-52/1 Jagdish Nivas
Old Feelkhana
Hyderabad, Telangana 500 012, India
http://globalagripl.com/
Booth(s): 119

Agarwal Group of Industries is a third-generation family business, manufacturing and exporting palm oil-based fats for dairies across the world as feed ingredients. We also manufacture and export edible oil-based animal nutrition products and feed supplements.

Agri-King Inc.
PO Box 208
Fulton, IL 61252-0208
http://www.agriking.com
Booth(s): 413

Agri-King is an animal nutrition company committed to the success and profitability of livestock producers worldwide. Known for its precise feed analyses, highly fortified products, and knowledgeable staff, Agri-King strives to help livestock producers get the most out of each pound of feed and each head of livestock.

Ajinomoto Heartland Inc.
8430 W Bryn Mawr Ave, Ste 650
Chicago, IL 60631-3421
http://www.ajipro-l.com
Booth(s): 113

Ajinomoto Heartland Inc. manufactures and distributes AjiPro-L, a cost-effective, feed-grade, rumen-protected lysine. AjiPro-L is used to balance amino acid levels in ruminant rations. Ajinomoto Heartland, a frontrunner in amino acid nutritional research and technical expertise, is one of five companies affiliated with the Ajinomoto Animal Nutrition Group.

American Dairy Science Association (ADSA)
1800 S Oak St, Ste 100
Champaign, IL 61820-6974
https://www.adsa.org/
Booth(s): 417

Established in 1906, ADSA is an international organization of educators, scientists, industry, and government representatives who are committed to advancing the dairy industry. All are keenly aware of the vital role the dairy sciences play in fulfilling the economic, nutritive, and health requirements of the world’s population. Together, ADSA members have discovered new methods and technologies that have revolutionized the dairy industry. Please visit www.adsa.org for more information.

American Registry of Professional Animal Scientists (ARPAS)
1800 S Oak St, Ste 100
Champaign, IL 61820-6974
http://www.arpas.org/
Booth(s): 106

All successful certification and licensing programs are targeted to serve and protect the public’s interest. More government
regulations and controls require that practicing professionals establish accountability by means of registry and certification programs. In today's business climate, producer and industry clients want assurance that they are getting advice from certified professionals who stay on the cutting edge. By completing the requirements for registration, maintaining your continuing education units, and adhering to the code of ethics, ARPAS registration provides you with a new level of recognition to help you distinguish yourself to your clients as a Professional Animal Scientist.

ANKOM Technology
2052 O'Neil Rd
Macedon, NY 14502-8953
http://www.ankom.com
Booth(s): 217
ANKOM Technology produces analytical instrumentation for food and feed testing. We are best known for introducing Filter Bag Technology (FBT), which allows high volume, accurate analytical testing. Our systems are used in more than 93 countries worldwide. Ask about our products: ANKOM A2000 Fiber Analyzer, ANKOM Daisy II Incubator, ANKOM RF Gas Production Analyzer, and ANKOM XT15 Fat Extractor.

Arm & Hammer Animal Nutrition
469 N Harrison St
Princeton, NJ 08540-3510
http://AHanimalnutrition.com
Booth(s): 419
Animals First. Productivity Always. For the most important jobs you need to get done, Arm & Hammer Animal Nutrition can help keep you on the road to success. During each animal’s life cycle, there are many unexpected turns along the way and we’ll help you deliver the right advice with the right products at the right time. We’ll help navigate so you can stay focused.

Balchem
PO Box 600, 52 Sunrise Park
New Hampton, NY 10958-0600
http://www.balchem.com
Booth(s): 319, 418
Balchem provides state-of-the-art solutions and the finest quality products for a range of industries worldwide, including human nutrition, animal nutrition, and industrial applications. We apply proven science and industry-leading technologies backed by years of success in the feed industry. You will not find a more experienced and committed team of scientists and researchers strategically aligned to identify and develop high-quality, innovative, proprietary products designed to meet your animal nutrition, productivity and wellness needs. But in the end, it all comes down to results — real results you can count on, results that help you meet your goals.

Bar Diamond Inc
PO Box 60
Parma, ID 83660-0060
http://www.bardiamond.com
Booth(s): 318
Bar Diamond provides rumen cannulae and accessories to researchers worldwide. Let us know how we can help you.

BCF Technology
2900 43rd St NW, Ste 600
Rochester, MN 55901
http://www.bcftechnology.com
Booth(s): 105
A worldwide provider of animal and veterinary diagnostic imaging solutions, bovine ultrasound for sexing, preg check, pregnancy diagnosis, fetal aging, and gender. The Easi-Scan is rugged, reliable, and built to cope with the demanding environment of the farm, stable, and veterinary practice.

BIOMIN America Inc.
1846 Lockhill Selma Rd, Ste 101
San Antonio, TX 78213-1551
http://www.biomin.net
Booth(s): 504
As an animal nutrition company, BIOMIN develops and produces feed additives, premixes, and services for healthy and profitable animals. Our solutions cover mycotoxin risk management and natural growth promotion for swine, poultry, ruminants and aquaculture.

Bioprocess Control AB
Scheelevagen 22
223 63 Lund
Sweden
http://www.bioprocesscontrol.com
Booth(s): 218
Bioprocess Control is a technology and market leader in the area of advanced instrumentation and control technologies for research and commercial applications in a wide range of industries. The company was founded in 2006, and brings to market more than 15 years of industry-leading research in the area of instrumentation, control, and automation of anaerobic digestion processes. Bioprocess Control has a broad product portfolio designed for measuring low gas volume and flow with high precision and accuracy. Our instruments are used worldwide by scientists and engineers for research and industry, in a wide range of application fields.

BioZyme Inc.
6010 Stockyards Expressway
St. Joseph, Missouri 64504
http://biozymeincom.com/
Booth(s): 116
BioZyme Incorporated is an innovative company in the agricultural fields of livestock nutrition and animal microbiology. Through research and outreach, we aim to bring the highest-quality, proprietary products to animals so they can maximize their abilities to perform and thrive, for sustainability that comes full circle.

Bruker Optics Inc.
19 Fortune Dr
Billerica, MA 01821-3923
http://www.bruker.com/nir
Booth(s): 404
Using Bruker’s new FT-NIR MPA-D (Multiple Purpose Analyzer - Dairy) instrument, you can perform fast analysis for all your dairy products—solid or liquid (e.g., milk, raw milk, cream, yogurt, whey, butter, ice cream, milk powder, cheese powder). www.bruker.com/dairy.
Central Life Sciences
1501 E Woodfield Rd
Suite 200 West
Schaumburg, IL 60173-6052
http://www.centrallifesciences.com
Booth(s): 204

Central Life Sciences, whose founders pioneered biorational pest control more than 40 years ago, offers unique and effective pest management solutions to make life better for people, plants, and animals. By affecting the insects’ own chemistry, Central Life Sciences’ products inhibit the life cycle of numerous pest species to reduce destructive populations. The Altosid, ClariFly, and Starbar lines of products decrease nuisance and disease-spreading flies from livestock and poultry operations, which helps increase animal performance and producer profitability.

Chr. Hansen Inc.
99015 W Maple St
Milwaukee, WI 53214
http://www.chr-hansen.com
Booth(s): 110

Chr. Hansen Inc. was founded in 1874 by the Danish pharmacist Christian Ditlev Ammentorp Hansen. Since then, Chr. Hansen has continued to revolutionize and set standards for manufacture of microbial products. We believe that microbial challenges require microbial solutions. With that in mind, we own one of the world’s largest commercial collections of bacteria, numbering more than 25,000 strains.

Cumberland Valley Analytical Services
14515 Industry Dr
Hagerstown, MD 21742-2410
http://www.foragelab.com
Booth(s): 101, 200

Cumberland Valley Analytical Services is a full-service forage and feed testing laboratory serving the United States, Canada, and the world. We specialize in providing contract support for the establishment and operation of NIR feed labs. We are focused on serving the analytical needs of the research community.

Dairy Nutrition Plus
406 First Street, PO Box 68
Ralston, IA 51459
http://www.dairynutritionplus.com
Booth(s): 212

Dairy Nutrition Plus is a family of quality products by Landus Cooperative. Its branded dairy feed ingredients include SoyPlus and SoyChlor. SoyPlus is a high-quality, consistent, high rumen bypass, expeller-process soybean meal. Using this 100% natural protein source to balance protein and amino acids in dairy diets can improve efficiency of protein utilization, optimize dietary RUP:RDP ratios, reduce dietary protein levels, and reduce nitrogen in animal wastes. SoyChlor is a high quality, consistent chloride supplement for close-up dry dairy cows. Feeding SoyChlor as part of a negative-DCAD diet will help decrease the incidence of clinical milk fever and subclinical hypocalcemia.

Dairy One Forage Lab
730 Warren Rd
Ithaca, NY 14850-1242
http://www.dairyone.com
Booth(s): 216

The Dairy One Forage Lab excels in providing you with high-quality analyses and customer service. Our goal is to provide you with analytical services designed to meet the expanding demands of modern agriculture.

Dairy Records Management Systems
313 Chapanoke Rd Ste 100
Raleigh, NC 27603-3435
http://www.drms.org
Booth(s): 208, 210

Dairy Records Management Systems provides innovative dairy information products and services for producers, DHIA staff, consultants and other dairy industry professionals. Comprehensive processed reports include Heifer Genomics Guide, Transition Cow Management and MUN Profile. Leading-edge software and web tools include PCDART, PocketDairy Android, Herd Detective, DairyMetrics, WebReports, and Reports On-Demand.

DASCOR Inc
PO Box 462885
Escondido, CA 92046-2885
http://www.dascor.com
Booth(s): 316

A world leader, DASCOR provides data loggers for ruminal research with over 500 units already in the field, which measure temperature, ORP/REDOX, pH, and battery voltage. Support software allows calibration and set-up for tests and downloads the data into an Excel compatible file. DASCOR has improved the performance and long-term reliability of both the loggers and sensors. Our pH sensors now have significantly extended life, reliability and repeatability demonstrated over multiple field trials.

Diamond V
2525 60th Ave SW
Cedar Rapids, IA 52404
http://www.diamondv.com
Booth(s): 301, 400

Diamond V is a leading global nutrition and health company that conducts research in dairy cattle and other species and manufactures natural, precision fermentation products to support animal health, animal performance, and food safety worldwide. Global headquarters and all manufacturing is located in Cedar Rapids, Iowa. Diamond V also has offices in five other countries and markets products in more than 60 countries. More than 70 years of science, innovation, technology, and quality have earned Diamond V the reputation of The Trusted Experts in Nutrition and Health. Contact Diamond V at tel. +1.319.366.0745, email info@diamondv.com, or website www.DiamondV.com.
E.I. Medical Imaging
110 12th Street SW, Unit 102
Loveland, CO 80537
http://www.eimedical.com/
Booth(s): 305

E.I. Medical Imaging (EIMI) is a world leader and the only US manufacturer of portable ultrasound solutions specifically engineered for veterinary use. For the past 32 years, the company’s core values have remained intact: putting the customer first and delivering solid, effective ultrasound solutions. EIMI provides the Ibex portable ultrasound systems.

Elsevier
Radarweg 29
1043 NX Amsterdam
Netherlands
http://www.elsevier.com
Booth(s): 508

Elsevier is a world-leading multiple media publisher of science, technology, and health information products and services. We are proud to publish the Journal of Dairy Science® (JDS), the official journal of the American Dairy Science Association. Please visit the Elsevier booth with any questions you have about accessing JDS online.

FASS
1800 S Oak St, Ste 100
Champaign, IL 61820-6974
https://www.fass.org/
Booth(s): 518

Since 1998, FASS has provided shared management services to not-for-profit animal science and related organizations. FASS services include accounting, conference planning and event management, membership and administration, publication services, and information technology services. FASS is a 501(c)(3) support organization. Our tax-exempt status allows us to serve our clients at very reasonable rates. Currently, we provide services to more than 10,000 professionals in animal agriculture and other sciences. FASS has the staff resources, talent, and experience your organization needs to let your leadership focus on driving your organization forward.

Feed Components
1988 Energy Dr
East Troy, WI 53120
http://www.feedcomponents.com
Booth(s): 205, 304

Feed Components was established in 2008 with the vision to bring innovative and well-researched products to market. By investing in research, technology and support we lead the market in innovation with a state of the art dairy research and development center associated with a world-class commercial dairy farm. We are a progressive company composed of dairy producers, nutritionists, salespeople, researchers and veterinarians who offer support and technical service in all areas of your business. Over the past several years we have grown our business, our company, and our relationships to bring advancements in technologies that directly affect our customers bottom-line.

Feedstuffs
12400 Whitewater Dr Ste 160
Minnetonka, MN 55343-4158
http://www.Feedstuffs.com
Booth(s): 409

Animal agriculture’s news and information leader.

Grober Nutrition LLC
20 Eagle Dr
Auburn, NY 13021
http://www.grobernutrition.com
Booth(s): 401

Grober Nutrition is a milk replacer and ingredient company based in upstate New York.

HerdStrong
3115 35th Avenue
Greeley, CO 80634-9415
http://dvmsystems.com
Booth(s): 512

HerdStrong develops and markets automatic animal monitoring products internationally to dairy and beef farms, and research organizations providing industry leading early illness and calving alerts. HerdStrong’s TruCore technology delivers highly accurate, reliable core body temperature data for research requiring a true gold standard. TruCore software allows researchers to capture core body temperature data and optionally to take advantage of HerdStrong’s baseline, water drinking event elimination, illness detection and calving data based upon proprietary algorithms from years of research. Data is secure and automatically backed up and can be exported to a .csv file for onsite or remote access.

Innovative Additives Inc.
33 Eagle Drive
Rehoboth Beach, DE 19971
http://www.innovad-global.be/
Booth(s): 405

Innovative Additives is a brand that combines experience in the field of animal feed additives and an innovative approach and dedication to animal well-being and a healthy environment while securing the producer’s cost effectiveness. With corporate headquarters and state-of-the-art production facilities close to Antwerp in Belgium, we are positioned to serve the global feed and animal industry.

King Techina Group
Ren He Jie Dao, Yuhang District
Hangzhou, Zhejiang 311107
China
http://www.kingtechina.com
Booth(s): 317, 416

King Techina has been devoted to developing and utilizing patented IMTM (Intelligent Microcapsule) technology since 1999. We provide IMTM technology-based products and services to improve animal health, increase productivity and efficiency, promote food safety and build a more sustainable agricultural system. All King Techina products are manufactured and packaged in plants certified by GMP+, FAMI-QS, ISO9001 and FDA. Customers in nearly 50 countries trust and use King Techina products and services, and our team will always be here to work with you side by side.
Milk Specialties Global
7500 Flying Cloud Drive, Suite 500
Eden Prairie, MN 55344
http://www.milkspecialties.com
Booth(s): 500

Milk Specialties Global Animal Nutrition is recognized for innovative and science-based products that offer proven benefits to the dairy industry. We are one of the largest providers of functional fats and are led by our flagship brand and top-selling product Energy Booster, as well as milk replacer products and dairy ingredients.

Novus International
20 Research Park Dr
Saint Charles, MO 63304-5633
http://www.novusint.com
Booth(s): 112

Novus is a leading developer of animal health and nutrition products for all species with worldwide headquarters in St. Charles, Missouri. Offering products based in science such as Alimet and MHA methionine supplements, Santequin and Agrado Plus antioxidants, Mintrex and MAAC chelated trace minerals, and Cibenza enzymes. Other notable Novus product lines include Zorien SeY, Solis, and Sporulin. Novus works to improve animal performance, health and well-being globally.

Origination Inc.
1300 McKnight Road North
Maplewood, MN 55119
http://www.OriginationO2D.com
Booth(s): 114

Feed Products North Inc. d/b/a Origination Inc. (O2D) is a premier distributor of animal feed ingredients, fertilizers, industrial products and ice melt to the upper Mississippi region of the United States. Over the company’s seven-decade-long history, it has been an innovative provider of quality products and value-added services to the agriculture market. O2D has been providing feed formulators research proven ingredient solutions for over sixty years.

PortaCheck Inc.
1 Whittendale Dr, Ste E
Moorestown, NJ 08057
https://www.portacheck.com/
Booth(s): 104

PortaCheck Inc. was founded in 2004 to focus on the marketing and sale of portable testing devices for the dairy industry. Our on-farm tests that screen for mastitis, SCC and ketosis are now sold in over 65 countries.

Poultry Protein & Fat Council
1530 Cooledge Rd
Tucker, GA 30084-7303
http://www.poultryrenderers.org/
Booth(s): 510

The leading technical resources and advocate for the poultry rendering industry, serving its members through research, education, and promotional services.

SoyBest
PO Box 157
West Point, NE 68788-0157
http://www.soybest.com
Booth(s): 201, 300

SoyBest is a high bypass soybean meal manufactured using a mechanical screwpress.

Stuhr Enterprises LLC
2210 Hwy 34
Waco, NE 68460
http://www.stuhrenterprises.com
Booth(s): 100

Stuhr Enterprises LLC is a global company with manufacturing plants in Iowa and Missouri. It makes and markets two transition cow feed additives: Anion Booster is the most palatable anion additive available in the market and is commonly the best value compared with other anion sources. Glucose Booster is the most effective glucose precursor available in the market with recent research proving its efficacy.

Topcon Agriculture (formerly Digi-Star LLC)
W5527 Hwy 106
Fort Atkinson, WI 53538
http://www.digi-star.com
Booth(s): 108

Digi-Star is a global supplier of electronic equipment, precision sensors, optical yield and feed management sensors, displays, position verification, and software used by farmers and other equipment operators to precisely measure and analyze valuable data from critical farming processes. Digi-Star has a unique balance of expertise in the livestock and grain equipment markets.

VetAgro Inc.
230 S Clark St, Ste 320
Chicago, IL 60604-1406
http://www.vetagro.com
Booth(s): 117

VetAgro specializes in the microencapsulation of feed additives and nutrients tailored to match the digestive capacity and intestinal transit time of poultry, swine and ruminants. We are present globally, with international patents evidencing our novelty and innovation. Our dairy products include Timet, rumen-protected Methionine to improve milk yield and quality, Mecovit, a synergistic combination of rumen-protected methionine, choline, betaine, and B vitamins, targeting the metabolism of the transition dairy cow; AviPremium rumen-protected tributyrin, the most concentrated source of butyric acid currently available. To find out more about VetAgro products, please visit us at our booth.
ADSA Corporate Sustaining Members

Ag Processing Inc.
Arm & Hammer Animal Nutrition
Dairy Nutrition Plus
Darling International Research
Diamond V
DuPont Pioneer
Elanco Animal Health
Grande Cheese Company
JH Biotech Inc.

Lallemand Animal Nutrition
Nutriad Inc.
Papillon Agricultural Co.
QualiTech Inc.
Renaissance Nutrition Inc.
Zinpro
Zoetis Animal Health
Zook Nutrition & Management Inc.

Thank you for your support!
Income over feed cost increases when balancing for amino acids

Properly balance amino acids to:
- Improve nitrogen efficiency
- Support higher milk and protein
- Provide a concentrated nutrient during negative energy balance

Capitalize on Best Practices. Insist on AjiPro®-L:

- The most heavily researched rumen protected lysine; scientifically proven by universities and research institutes
- L-lys content 40%
- Highly bypassable (80% rumen bypass)
- Highly digestible (80% intestinal digestibility)
- Highly bioavailable (64%)
- M-Lys content 25%
- Stable in TMRs and premixes

AjiPro®-L
Rumen Protected Lysine

AJINOMOTO
AJINOMOTO HEARTLAND, INC.
8430 W Bryn Mawr #650 • Chicago, IL, USA 60631-3421 • 773-850-9795 • AHISales@ajiusa.com • www.AjiPro-L.com
Thank you to the 2017 ADSA Annual Meeting Sponsors!

Platinum Level
BIOMIN America

Gold Level
- Chr. Hansen
- Elanco Animal Health
- Innovation Center for U.S. Dairy
- National Dairy Council
- Pancosma

Silver Level
- Diamond V
- European Association of Animal Production (EAAP)
- National Institute for Food and Agriculture-National Animal Nutrition Program (NIFA-NANP)

Bronze Level
- Adisseo
- Ajinomoto Heartland
- Balchem Corp./Animal Nutrition and Health
- Central Life Sciences
- Dairy Nutrition Plus
- Dean Foods
- DSM Nutritional Products
- Feed Components
- Jefo Nutrition
- Kemin Animal Health & Nutrition
- Micronutrients
- Phibro Animal Health Corp.
- Precision Dairy Farming Association
- Semex
- VetAgro Inc.

Donors
- Adifo Software
- Agropur Cooperative
- GrowSafe Systems Ltd.

Contributors
- Arm & Hammer Animal Nutrition
- Center for Dairy Excellence
- McNamara Research Fund in Agriculture Firm LLC
- QualiTech
- Virtus Nutrition
- Zoetis
The ADSA Foundation thanks the many contributors to LARGE DAIRY HERD MANAGEMENT, 3rd ed.

Editor-in-chief
David K. Beede

Section Editors
Building Sustainability and Capacity
David K. Beede
Large Herd Systems
Steven P. Washburn
Facilities and Environment
Joseph M. Zulovich and Joseph P. Harner
Milk Markets and Marketing
Normand R. St-Pierre
Genetic Selection Programs and Breeding Strategies
Kent A. Weigel
Calves and Replacements
Robert E. James
Reproduction and Reproductive Management
William W. Thatcher
Nutrition and Nutritional Management
Richard J. Grant and Heather M. Dann
Lactation and Milking Systems
Rupert M. Bruckmaier
Mastitis and Milk Quality
Joseph S. Hogan
Animal and Herd Welfare
Trevor DeVries
Herd Health
Carlos A. Risco
Business, Economic Analysis, and Decision-Making
Albert De Vries
Effectively Managing Farm Employees
Stanley J. Moore and Philip T. Durst
Precision Management Technologies
Jeffrey M. Bewley

Authors
Mike Akers
R. P. Amann
Dennis Armstrong
Alex Bach
David Barbano
David K. Beede
Don Bennink
Donagh Berry
Jeffrey M. Bewley
Rodrigo Bicalho
Brenda Boetel
Matthew Borchers
Barry Bradford
Andre Brito
Rupert Bruckmaier
Victor Cabrera
A. J. Carpenter
Kay Carson
David Casper
Hugh Chester-Jones
David Christensen
Rebecca Cockrum
Hans Coetzee
Mathew Cohen
John B. Cole
Robert Collier
Victor Cortese
Geoffrey Dahl
Cynthia Daley
Joe Dalton
Heather M. Dann
Barbara Darrt
Albert De Vries
Chad Dechw
Mel DeJarnette
Brian Dela Rue
Trevor DeVries
Kevin C. Dhuyvetter
Karmella Dolecheck
Danny Donaghy
Philip T. Durst
Steve Eicker
Marcia Endres
Jorge Estrada
Gonzalo Ferreira
John Fetrow
Lawrence K. Fox
David Fraser
Paul Fricke
Julio Giordano
Sandra Godden
Jesse Goff
Richard J. Grant
Ted Halbach
Les Hansen
Peter Hansen
Joseph P. Harner
Kevin Harvatine
Brad Heins
Torsten Hemme

Continued
The ADSA Foundation is excited to announce publication of the third edition (ebook) of *Large Dairy Herd Management*. The book includes 97 chapters in 15 sections: Building Sustainability and Capacity; Large Herd Systems; Facilities and Environment; Milk Markets and Marketing; Genetic Selection Programs and Breeding Strategies; Calves and Replacements; Reproduction and Reproductive Management; Nutrition and Nutritional Management; Lactation and Milking Systems; Mastitis and Milk Quality; Animal and Herd Welfare; Herd Health; Business, Economic Analysis, and Decision-Making; Effectively Managing Farm Employees; and Precision Management Technologies.

The book will be available for purchase at student and professional (member and nonmember) rates exclusively from ADSA. This third edition is fully updated and includes numerous color figures, video, and separate metric and imperial versions.

Visit http://ldhm.adsa.org/ for more information and to purchase the book today!
Schedule of Events

Scheduling and locations are subject to change without notice. All events take place at the David L. Lawrence Convention Center unless otherwise noted. Please refer to the onsite newsletter for late schedule and room changes.

Saturday, June 24
7:30 am – 5:00 pm ADSA Extended Leadership Strategic Planning Cambria, Westin
12:30 pm – 4:30 pm Student Tour: Pittsburgh Zoo and PPG Aquarium Meet in SAD hotel lobby
3:00 pm – 5:00 pm Registration open ... Concourse
3:00 pm – 5:00 pm Preload room open .. 313
7:00 pm Undergraduate Student Informal Mixer Meet in SAD hotel lobby

Sunday, June 25
7:00 am – 5:00 pm Preload room open .. 313
7:00 am – 5:00 pm Speaker ready room open 314
7:00 am – 7:00 pm Registration open ... Concourse
7:30 am – 10:00 am New Board Orientation .. Executive Boardroom, Westin
8:30 am – 2:30 pm ADSA Lactation Symposium 303
9:00 am – 4:00 pm NANP Nutrition Models Workshop 304-305
10:00 am – 11:00 am Undergraduate Student Officers and Advisors Meeting 322
10:00 am – 3:00 pm Workshop: The Impact of Raw Milk on Dairy Products 307
10:00 am – 6:00 pm Exhibit setup (exhibitors and student dairy clubs) Exhibit Hall B
11:00 am – 12:00 pm Undergraduate Student Quiz Bowl Officials Meeting 322
11:30 am – 12:00 pm Undergraduate Student Quiz Bowl Seating Test Ballroom B
12:00 pm – 1:00 pm Undergraduate Student Midday Mixer and Lunch Ballroom B
12:00 pm – 1:00 pm 2018 Program Committee Meeting 331
12:00 pm – 5:00 pm Hospitality Lounge open .. 332
12:00 pm – 5:00 pm Media Room open ... 335
12:00 pm – 5:00 pm JDS Editors and JMC Lunch and Meeting Westmoreland, Westin
1:00 pm – 5:00 pm Undergraduate Student Quiz Bowl Seating/
Preliminary Rounds ... 323 and 325
1:00 pm – 5:00 pm Teaching Workshop: Helping Students Learn 308
2:00 pm – 3:00 pm Production Division Council Meeting 322
2:00 pm – 3:30 pm ADSA Foundation Board of Trustees Meeting Fayette, Westin
2:00 pm – 5:00 pm Graduate Student Division Symposium: Building Strong Work Relationships to Be Effective 306
3:00 pm – 4:00 pm Production Division Nominating Committee 322
3:00 pm – 5:00 pm Late-Breaking Original Research Session
(open to all attendees) .. 310-311
3:00 pm – 6:30 pm Dale Bauman Recognition Symposium and Reception 301-302
5:00 pm – 6:00 pm Dairy Foods Division Council Meeting 322
5:30 pm – 6:00 pm Dairy Quiz Bowl Final Round 325
7:30 pm – 10:00 pm Opening Session and Reception Ballroom A and Gallery

Monday, June 26
6:30 am – 7:00 am Undergraduate Student Posters setup Exhibit Hall B
6:30 am – 8:00 am Production Division Extension Breakfast Butler West, Westin
6:30 am – 5:15 pm Registration open ... Concourse
7:00 am – 5:00 pm Preload room open ... 313
7:00 am – 5:00 pm Speaker ready room open 314
7:15 am – 8:30 am Turn in SAD yearbooks and scrapbooks Exhibit Hall B, SAD booth
7:30 am – 9:30 am Undergraduate Student Poster Presentations Exhibit Hall B
7:30 am – 9:30 am Poster presentations .. Exhibit Hall B
8:00 am – 9:00 am Coffee, milk, and pastries Exhibit Hall B
8:00 am – 9:00 am Introduction to S-PAC ... Exhibit Hall B, ADSA booth
8:00 am – 10:00 am International Feed and Nutrition Network meeting 306
8:00 am – 5:00 pm Media Room open ... 335
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 am – 5:00 pm</td>
<td>Interview Room open</td>
<td>336</td>
</tr>
<tr>
<td>8:00 am – 5:00 pm</td>
<td>Commercial exhibits open</td>
<td>Exhibit Hall B</td>
</tr>
<tr>
<td>8:00 am – 5:00 pm</td>
<td>Job Resource Center open</td>
<td>Exhibit Hall B</td>
</tr>
<tr>
<td>8:00 am – 5:00 pm</td>
<td>Hospitality Lounge open</td>
<td>332</td>
</tr>
<tr>
<td>8:30 am – 9:30 am</td>
<td>Undergraduate Student Judging of Yearbooks, Scrapbooks, Annual Reports</td>
<td>Exhibit Hall B, SAD booth</td>
</tr>
<tr>
<td>8:30 am – 9:30 am</td>
<td>Undergraduate Student Interviews for Outstanding Student and Advisor Awards</td>
<td>322</td>
</tr>
<tr>
<td>8:45 am – 10:00 am</td>
<td>Undergraduate Student Activities Symposium</td>
<td>333</td>
</tr>
<tr>
<td>9:30 am – 5:00 pm</td>
<td>Scientific sessions</td>
<td>Convention Center</td>
</tr>
<tr>
<td>10:00 am – 10:45 am</td>
<td>Undergraduate Student Business Meeting</td>
<td>334</td>
</tr>
<tr>
<td>10:00 am – 2:30 pm</td>
<td>Companion Tour 1: Beautiful City of Pittsburgh Tour</td>
<td>Meet near Registration</td>
</tr>
<tr>
<td>10:30 am – 12:30 pm</td>
<td>ARPAS Exam.</td>
<td>307</td>
</tr>
<tr>
<td>11:00 am – 5:00 pm</td>
<td>Undergraduate Student Paper Presentations</td>
<td>333 and 334</td>
</tr>
<tr>
<td>12:30 pm – 2:00 pm</td>
<td>Graduate Student Division Career Insights Lunch</td>
<td>308</td>
</tr>
<tr>
<td>12:30 pm – 2:00 pm</td>
<td>Undergraduate Student Career Roundtable Lunch</td>
<td>304-305</td>
</tr>
<tr>
<td>12:30 pm – 2:00 pm</td>
<td>Production Division Business Meeting (boxed lunch for purchase)</td>
<td>306</td>
</tr>
<tr>
<td>12:30 pm – 2:00 pm</td>
<td>ADSA Past Presidents’ Luncheon</td>
<td>Butler West, Westin</td>
</tr>
<tr>
<td>2:00 pm – 4:00 pm</td>
<td>ARPAS Exam.</td>
<td>307</td>
</tr>
<tr>
<td>2:00 pm – 5:30 pm</td>
<td>ADSA Southern Branch Symposium and Business Meeting</td>
<td>318</td>
</tr>
<tr>
<td>5:00 pm – 6:30 pm</td>
<td>Award Donor Dinner</td>
<td>Pennsylvania, Westin</td>
</tr>
<tr>
<td>7:00 pm – 8:00 pm</td>
<td>Awards Program and Ceremony</td>
<td>Allegheny Ballroom, Westin</td>
</tr>
<tr>
<td>8:15 pm – 9:30 pm</td>
<td>Ice Cream Social</td>
<td>Allegheny Foyer, Westin</td>
</tr>
<tr>
<td>8:30 pm – 11:00 pm</td>
<td>Undergraduate Student Mixer: Riverboat Cruise on Gateway Clipper</td>
<td>Meet at Convention Center dock, Fort Duquesne Blvd</td>
</tr>
</tbody>
</table>

Tuesday, June 27

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:30 am</td>
<td>Fun Run</td>
<td>Point State Park</td>
</tr>
<tr>
<td>6:30 am – 8:00 am</td>
<td>JDS Editorial Board Breakfast/Meeting</td>
<td>Somerset, Westin</td>
</tr>
<tr>
<td>6:30 am – 8:00 am</td>
<td>Dairy Foods Division Milk Protein and Enzymes Breakfast</td>
<td>Fayette, Westin</td>
</tr>
<tr>
<td>7:00 am</td>
<td>Preload room open</td>
<td>313</td>
</tr>
<tr>
<td>7:00 am</td>
<td>Speaker ready room open</td>
<td>314</td>
</tr>
<tr>
<td>7:00 am – 5:15 pm</td>
<td>Registration open</td>
<td>307</td>
</tr>
<tr>
<td>7:30 am – 9:30 am</td>
<td>Poster presentations.</td>
<td>Exhibit Hall B</td>
</tr>
<tr>
<td>8:00 am – 9:00 am</td>
<td>Coffee, milk, and pastries.</td>
<td>Exhibit Hall B</td>
</tr>
<tr>
<td>8:00 am – 9:00 am</td>
<td>ADSA Spokesperson Program Q&A.</td>
<td>Exhibit Hall B, ADSA booth</td>
</tr>
<tr>
<td>8:00 am – 2:00 pm</td>
<td>Commercial exhibits open</td>
<td>Exhibit Hall B</td>
</tr>
<tr>
<td>8:00 am – 2:00 pm</td>
<td>Job Resource Center open</td>
<td>Exhibit Hall B</td>
</tr>
<tr>
<td>8:00 am – 5:00 pm</td>
<td>Media Room open</td>
<td>335</td>
</tr>
<tr>
<td>8:00 am – 5:00 pm</td>
<td>Interview Room open</td>
<td>336</td>
</tr>
<tr>
<td>8:00 am – 5:00 pm</td>
<td>Hospitality Lounge open</td>
<td>332</td>
</tr>
<tr>
<td>8:30 am – 9:30 am</td>
<td>Undergraduate Student Business Meeting—Election of Officers</td>
<td>334</td>
</tr>
<tr>
<td>9:30 am – 11:00 am</td>
<td>Undergraduate Career Symposium: Science to Social: Connecting with Today’s Consumer Online (open to all attendees)</td>
<td>304-305</td>
</tr>
<tr>
<td>9:30 am – 5:00 pm</td>
<td>Scientific sessions</td>
<td>Convention Center</td>
</tr>
<tr>
<td>9:45 am – 1:45 pm</td>
<td>Companion Tour 2: Flavor of Pittsburgh Tour</td>
<td>Meet near Registration</td>
</tr>
<tr>
<td>10:00 am – 11:00 am</td>
<td>Discover Conference Steering Committee Meeting</td>
<td>322</td>
</tr>
<tr>
<td>10:30 am – 12:30 pm</td>
<td>ARPAS Exam.</td>
<td>307</td>
</tr>
<tr>
<td>11:30 am – 12:30 pm</td>
<td>Dairy Foods Division Business Meeting</td>
<td>331</td>
</tr>
<tr>
<td>11:45 am – 2:00 pm</td>
<td>Undergraduate Student Awards Lunch</td>
<td>Ballroom B</td>
</tr>
<tr>
<td>12:30 pm – 2:00 pm</td>
<td>Dairy Foods Division Program Planning Lunch</td>
<td>322</td>
</tr>
<tr>
<td>2:00 pm – 3:00 pm</td>
<td>Undergraduate Student Award Photos</td>
<td>Ballroom B</td>
</tr>
<tr>
<td>2:00 pm – 3:00 pm</td>
<td>Undergraduate Student Exhibits—Pick up yearbooks and scrapbooks</td>
<td>Exhibit Hall B, SAD booth</td>
</tr>
</tbody>
</table>
2:00 pm – 4:00 pm ARPAS Exam .. 307
2:00 pm – 5:00 pm Commercial exhibits dismantle Exhibit Hall B
2:30 pm – 3:30 pm Undergraduate Student Committee Meeting—
Old and New Officers and Advisors 322
2:30 pm – 3:30 pm Graduate Student Division Three-Minute Thesis Challenge ... 333
3:45 pm – 4:30 pm Graduate Student Division Business Meeting
and Open Forum ... 333
5:00 pm – 7:00 pm Informal Calf Gathering Westmoreland, Westin
5:00 pm – 7:00 pm Informal Milk Quality Session (new in 2017) Allegheny 2, Westin
6:00 pm
Wisconsin Breakfast (speaker Juan Loor),
hosted by Feed Components Sienna Mercato, 942 Penn Ave
6:30 pm – 8:30 pm Penn State University Reception Butler West, Westin
7:00 pm – 9:00 pm Iowa State Alumni and Friends Reception Cambria, Westin
7:00 pm – 9:00 pm Purdue Animal Sciences Alumni Reception Somerset, Westin
7:00 pm – 10:00 pm Canadian Society of Animal Science (CSAS)
Wine and Cheese Social Fayette, Westin
7:00 pm – 10:00 pm GSD Mixer: Take Me Out to the Ballgame: Pirates vs. Rays ... PNC Park

Wednesday, June 28
7:00 am – 12:00 pm Preload room open .. 313
7:00 am – 12:00 pm Speaker ready room open 314
7:00 am – 12:00 pm Registration open Concourse
8:00 am – 9:00 am Mycobacterial Diseases of Animals Interest Group 331
8:00 am – 12:00 pm Media Room open 335
8:00 am – 12:00 pm Interview Room open 336
8:00 am – 12:00 pm Hospitality Lounge open 332
8:00 am – 5:00 pm Mixed Models Workshop 317-318
8:30 am – 9:30 am ADSA Business Meeting and Open Forum 303
9:30 am – 12:30 am Scientific sessions Convention Center
12:30 pm – 2:30 pm ADSA Board of Directors Meeting Cambria, Westin

Thursday, June 29
8:00 am – 12:00 pm Mixed Models Workshop (continued) 317-318
8:45 am – 4:15 pm Teagasc-Moorepark/University College
Cork Cheese Symposium William Penn Ballroom, Omni
William Penn Hotel
ADSA-Student Affiliate Division Program
SAD Special Events

Saturday, June 24
ADSA Student Tour: Pittsburgh Zoo & PPG Aquarium
12:30 – 4:30 pm
Tickets: $18
The Pittsburgh Zoo & PPG Aquarium offers students the opportunity to take an inside glimpse behind the scenes with the zoo’s animals. With a backstage pass, participants will explore animal holding areas and learn about animal care in a zoo environment. Ticket price includes zoo program, admission, and round-trip transportation and is offered to both undergraduate and graduate student members.

Sunday, June 25
ADSA Undergraduate Student Midday Mixer and Lunch
12:00 – 1:00 pm
Tickets: $5
Convention Center, Ballroom B
Join your fellow dairy clubs for a fun hour of getting reacquainted and making new friends, and get to know your 2017–2018 Student Affiliate Division (SAD) Officer candidates. Ticket price includes lunch. Note: Registration is limited to ADSA undergraduate student members and advisors.

Dairy Quiz Bowl Final Round
Sunday, June 25
5:30 – 6:00 pm
Convention Center, Room 325
University teams from across North America will compete in the ADSA-SAD Dairy Quiz Bowl. The event gives schools an opportunity to demonstrate their knowledge about dairy production, processing, and ADSA history. The Student Affiliate Division (SAD) invites you to join them for the excitement of the final round of competition as the top two schools go head to head for the title of 2017 Dairy Quiz Bowl Winning Team.

Opening Session and Reception
7:30 – 8:45 pm; 8:45 – 10:00 pm
Ballroom A and Gallery
Come help us kick off the 2017 ADSA Annual Meeting at the opening session. Then, wind down the evening by joining us after the session for food and drinks and some long-awaited socializing time with colleagues and friends.

Monday, June 26
ADSA Undergraduate Student Poster and Paper Competitions
Convention Center
Support the future of ADSA—plan time in your schedule to visit the undergraduate posters on Monday morning and the oral presentations on Monday morning and afternoon. See scientific program for complete details.

SAD Undergraduate Career Roundtable Lunch
12:30 – 2:00 pm
Tickets: $10
Convention Center, Room 304-305
This year, we’ve added lunch to this already successful SAD program. This event is conveniently scheduled during the lunch break on Monday, so students will have the opportunity to dine and network with professional members representing a wide array of careers in the dairy industry. They will learn about careers in industry, get useful tips on planning for their careers, and much more. Students are encouraged to dress professionally (business casual or better) and bring several copies of their résumés. Students should also plan time to visit industry reps in the exhibit hall for information about internships and job opportunities.

ADSA Awards Program
7:00 – 8:00 pm
Allegheny Ballroom, Westin Hotel
All meeting participants, families, and friends are welcome to attend the 2017 ADSA awards program. Please join us at this special event to recognize and congratulate the 2017 award winners.

Ice Cream Social
8:15 – 9:30 pm
Allegheny Foyer, Westin Hotel
With the hard work behind you, it’s time to celebrate! Join your fellow undergraduates aboard the Gateway Clipper for an evening cruise on Pittsburgh’s famous three rivers: the Monongahela, the Allegheny, and the Ohio, while enjoying the beautiful setting sun over the river city. Ticket price includes light snacks and sodas.

Tuesday, June 27
Undergraduate Career Symposium—Science to Social: Connecting with Today’s Consumer Online
9:30 – 11:00 am
Convention Center, Room 304-305
It’s no surprise that many consumers today are disconnected from their food source. Join this digital workshop to learn how to use your credibility and online tools to reach consumers with accurate information about dairy. You’ll walk away with new techniques and ready to share your story online. This program is open to all ADSA meeting attendees, including undergraduates. To help us plan, please register on the registration form.

ADSA Undergraduate Student Awards Luncheon
11:45 am – 2:00 pm
Convention Center, Ballroom B
Plan to attend this year’s Student Affiliate Division awards luncheon. The afternoon will be capped with the presentation of student awards and announcement of new SAD officers. Both students and professionals are encouraged to attend. This is a wonderful chance to get to know the next generation of the dairy industry.
SAD Schedule of Events

Rooms listed below are in the David L. Lawrence Convention Center unless otherwise noted. Consult the meeting website (http://www.adsa.org/sad.asp) for the latest program information. Please refer to the onsite newsletter for late schedule and room changes.

Saturday, June 24
12:30 pm – 4:30 pm Student Tour: Pittsburgh Zoo & PPG Aquarium Meet in SAD hotel lobby
3:00 pm – 5:00 pm Registration open ... Concourse
3:00 pm – 5:00 pm Preload/speaker ready rooms open 313/314
7:00 pm SAD Informal Mixer ... Meet in SAD hotel lobby

Sunday, June 25
7:00 am – 5:00 pm Preload/speaker ready rooms open 313/314
7:00 am – 7:00 pm Registration open ... Concourse
10:00 am – 11:00 am Officers and Advisors Meeting 322
11:00 am – 12:00 pm Dairy Quiz Bowl Officials Meeting 322
11:30 am – 12:00 pm Dairy Quiz Bowl Seating Test Ballroom B
12:00 pm – 1:00 pm Midday Mixer and Lunch Ballroom B
1:00 pm – 5:00 pm Dairy Quiz Bowl Preliminary Rounds 323 and 325
5:30 pm – 6:00 pm Dairy Quiz Bowl Final Round 325
7:30 pm – 10:00 pm Opening Session and Reception Ballroom A and Gallery

Monday, June 26
6:30 am – 5:15 pm Registration open ... Concourse
6:30 am – 7:00 am Hanging of SAD posters Exhibit Hall B
7:00 am – 5:00 pm Preload/speaker ready rooms open 313/314
7:15 am – 8:30 am Turn in yearbooks, scrapbooks, and annual reports Exhibit Hall B, SAD booth
7:30 am – 9:30 am Poster presentations ... Exhibit Hall B
8:00 am – 9:00 am Coffee, milk, and pastries Exhibit Hall B
7:30 am – 5:00 pm Posters available for viewing Exhibit Hall B
8:00 am – 5:00 pm Commercial exhibits open Exhibit Hall B
8:00 am – 5:00 pm Job Resource Center open Exhibit Hall B
8:30 am – 9:30 am Judging of Yearbooks, Scrapbooks, and Annual Reports Exhibit Hall B, SAD booth
8:30 am – 9:30 am Interviews for Outstanding Student and Advisor Awards 322
8:45 am – 10:00 am Activities Symposium Convention Center
9:30 am – 5:00 pm Scientific sessions ... Convention Center
10:00 am – 10:45 am SAD Business Meeting 334
10:30 am – 12:30 pm ARPAS Exam* .. 307
11:00 am – 12:30 pm SAD Undergraduate Dairy Foods Competition 333
12:30 pm – 2:00 pm Undergraduate Student Career Roundtable Luncheon 304-305
2:00 pm – 4:00 pm ARPAS Exam* .. 307
2:00 pm – 5:00 pm SAD Undergraduate Original Research Competition 333
2:00 pm – 5:00 pm SAD Undergraduate Production Competition 334
5:00 pm – 5:30 pm Removal of posters .. Exhibit Hall B
7:00 pm – 8:00 pm ADSA Awards Program Allegheny Ballroom, Westin Hotel
8:15 pm – 9:30 pm Ice Cream Social ... Allegheny Foyer, Westin Hotel
8:30 pm Undergraduate Student Mixer: Riverboat Cruise Fort Duquesne Blvd

Tuesday, June 27
7:00 am – 5:00 pm Preload/speaker ready rooms open 313/314
7:00 am – 5:15 pm Registration open ... Concourse
7:30 am – 9:30 am Poster presentations ... Exhibit Hall B
7:30 am – 2:00 pm Posters available for viewing Exhibit Hall B
8:00 am – 9:00 am Coffee and pastries ... Exhibit Hall B
8:00 am – 2:00 pm Commercial exhibits open Exhibit Hall B
8:00 am – 2:00 pm Job Resource Center open Exhibit Hall B
8:30 am – 9:30 am SAD Business Meeting—Election of Officers 334
9:30 am – 11:00 am Science to Social: A Workshop on Connecting with
 Today’s Consumer Online 304-305
9:30 am – 5:00 pm Scientific sessions .. Convention Center
10:30 am – 12:30 pm ARPAS Exam* .. 307
11:45 am – 2:00 pm SAD Awards Lunch ... Ballroom B
2:00 pm – 3:00 pm Pick up yearbooks and scrapbooks Exhibit Hall B, SAD booth
2:00 pm – 4:00 pm ARPAS Exam* .. 307
2:30 pm – 3:30 pm SAD Old and New Officers and Advisors Meeting 322

*An ADSA Annual Meeting Exclusive: The American Registry of Professional Animal Scientists (ARPAS) exam will be offered to students with a dairy focus interested in taking the ARPAS Dairy Cattle exam. Better yet, ARPAS will waive the exam fee for seniors, new graduates, and graduate students who take it during the annual meeting! ARPAS provides certification of animal scientists through examination, continuing education and commitment to a code of ethics, and disseminates applied scientific information through publication of a peer-reviewed journal, The Professional Animal Scientist (http://www.professionalanimalscientist.org/). Take advantage of this tremendous opportunity to become ARPAS certified.

Thank you to sponsors and donors for their generous support of Student Affiliate Division and Graduate Student Division events at ADSA 2017

SAD Sponsors and Donors

Adisseo
Arm & Hammer Animal Nutrition
Daisy Brand
Elanco Animal Health
Glanbia
Jack H. Britt Consulting
Novus International
Purina Animal Nutrition LLC
Select Sires Inc.

GSD Event Sponsors and Donors

Purina Animal Nutrition LLC
Lallemand Animal Nutrition
Elanco Animal Health
Bar Diamond
Dairy Nutrition and Management Consulting
Kemin Animal Health & Nutrition
Thank you to the ADSA 2017 Program Committees

Overall Program Committee
Ignacio Ipharraguerre
Stephanie Clark
Cathleen Williams
Trish Dawson
Mike Brouk
Tom McFadden

Animal Behavior and Well-Being
Kathryn Proudfoot
Trevor DeVries
Peter Krawczel

Animal Health
Michael Ballou
Kasey Moyes
Barry Bradford

Bioethics
Leorges Moraes Fonseca
Kathryn Proudfoot
Meredith Niles

Breeding and Genetics
Filippo Miglior
Christian Maltecca
Christine Baes

Contemporary and Emerging Issues
Luis C. Solorzano
Tamilee Nennich
Duarte Diaz

Dairy Foods
Trish Dawson
Zey Ustunol
Annie Bienvenue
Rohit Kapoor
Michael Miller
Sam Alcaine

Extension Education
Donna Amaral-Phillips
Jeffrey Bewley
Mike Schutz

Food Safety
Frost M. Steele
Lisa Holden
Kerry Kaylegian

Forages and Pastures
Jong-Su Eun
Gonzalo Ferreira
Andre Brito

Growth and Development
Kristy Daniels
Harald Hammon
Michael Steele

International Animal Agriculture
Kimmi Devaney
Michel Wattiaux
Alex Bach

Lactation Biology
Laura Hernandez
Chel Moore
Rafael Jimenez-Flores

Milk Protein and Enzymes
Dave Everett
Milena Corredig
Lloyd Metzger
Yves Pouliot
Rodrigo Roesch
Hasmukh Patel
Phoebe Qi
Federico Harte
Rafael Jimenez-Flores
Don McMahon
Christina Lovendoski

Physiology and Endocrinology
Alex Souza
Juan Loor
Rob Rhoads

Production, Management, and the Environment
Vinicius Moreira
Phil Cardoso
Victor Cabrera

Ruminant Nutrition
Timothy Hackmann
Guillermo Schroeder
Stephanie Ward

Small Ruminant
Gerardo Caja
Antonello Cannas
Maristela Rovai
Stephanie Clark

Teaching/Undergraduate and Graduate Education
Antonio Faciola
Michel Wattiaux
Cathleen Williams

Dale Bauman Recognition Symposium
Ken McGuffey
Robert Collier
Lance Baumgard

ADSA Multidisciplinary and International Keynote (MILK) Symposium
Michael VandeHaar

ADSA Southern Section Symposium
Peter Krawczel
ADSA Production Division Symposium
Cathleen Williams

ADSA Lactation Symposium
Laura Hernandez
Jimena Laporta
Kevin Harvatine
Kristy Daniels
Kerst Stelwagen
Rupert Bruckmaier

ADSA Graduate Student Symposium
Hiral Vora
Kasey Klein

Graduate Student Competition: ADSA Dairy Foods
Oral
Randy Brandsma
Shantanu Agarwal
Rani Govindasamy-Lucey

Graduate Student Competition: ADSA Dairy Foods
Poster
Shantanu Agarwal
Hari Meletharayil
Sam Alcaine

Graduate Student Competition: ADSA Production
Oral (MS/PhD)
Heather Dann
Masahito Oba
Maris McCarthy
Peter Krawczel

Graduate Student Competition: ADSA Production
Poster (MS/PhD)
Liz Karcher
Paul Fricke
Julie Huzzey
Massimo Bionaz
Keena Mullen
Agustin Rius

Graduate Student Competition: ADSA Southern Section
Oral Competition
Peter Krawczel

NANP Nutrition Models Workshop
John McNamara

Teaching Workshop
Michel Wattiaux

Workshop: Impact of Raw Milk Quality on Dairy Products
Kerry Kaylegian

Mixed Models Workshop
Nora Bello

Teagasc-Moorepark/University College Cork Cheese
Symposium
Paul Kindstedt and Diarmuid (JJ) Sheehan

ADSA/American Society for Nutrition Symposium
Don Beitz and John Courtney

Animal Health Symposium: Joint ADSA/NMC
Leo Timms
Gina Pighetti
Mario Lopez
Ron Erskine

Precision Dairy Farming Symposium
Jeffrey Bewley and Marcia Endres
IT JUST FIGURES.
HOLSTEINS OR JERSEYS
SUMMER OR WINTER
3X OR 2X MILKING
NO MATTER THE VARIABLES
STRATA PRODUCES
7+ LBS. FCM
PLUS REPRO GAINS

STRATA®
WITH EPA/DHA OMEGA-3

FIGURE THE EXACT RETURNS FOR YOUR DAIRY AT STRATAMATH.COM
Scientific Program Table of Contents

Sunday, June 25

SYMPOSIA, ORAL SESSIONS, AND WORKSHOPS

<table>
<thead>
<tr>
<th>Event</th>
<th>Abstract no.</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADSA Lactation Symposium</td>
<td></td>
<td>1–5</td>
</tr>
<tr>
<td>National Animal Nutrition Program (NANP) Nutrition Models Workshop</td>
<td></td>
<td>6–11</td>
</tr>
<tr>
<td>Workshop: The Impact of Raw Milk Quality on Dairy Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching Workshop: Helping Students Learn</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

SYMPOSIA AND ORAL SESSIONS

<table>
<thead>
<tr>
<th>Event</th>
<th>Abstract no.</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dale Bauman Recognition Symposium and Reception</td>
<td></td>
<td>13–17</td>
</tr>
</tbody>
</table>

Monday, June 26

POSTER PRESENTATIONS

<table>
<thead>
<tr>
<th>Event</th>
<th>Abstract no.</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADSA Dairy Foods Graduate Student Poster Competition</td>
<td>M1–M17</td>
<td>45</td>
</tr>
<tr>
<td>ADSA Graduate Student (MS) Production Poster Competition</td>
<td>M18–M26</td>
<td>46</td>
</tr>
<tr>
<td>ADSA Graduate Student (PhD) Production Poster Competition</td>
<td>M27–M42</td>
<td>46</td>
</tr>
<tr>
<td>ADSA-SAD Original Research Undergraduate Student Poster Competition</td>
<td>M43–M53</td>
<td>48</td>
</tr>
<tr>
<td>Animal Behavior and Well-Being I</td>
<td>M54–M63</td>
<td>48</td>
</tr>
<tr>
<td>Animal Health I</td>
<td>M64–M99</td>
<td>49</td>
</tr>
<tr>
<td>Breeding and Genetics I</td>
<td>M100–M107</td>
<td>52</td>
</tr>
<tr>
<td>Dairy Foods I:</td>
<td>M13, M108–M120</td>
<td>53</td>
</tr>
<tr>
<td>Chemistry I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy Foods II:</td>
<td>M121–M132</td>
<td>54</td>
</tr>
<tr>
<td>Chemistry II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy Foods III:</td>
<td>M133–M145</td>
<td>55</td>
</tr>
<tr>
<td>Microbiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension Education</td>
<td>M146–M150</td>
<td>56</td>
</tr>
<tr>
<td>Forages and Pastures I</td>
<td>M151–M171</td>
<td>56</td>
</tr>
<tr>
<td>Lactation Biology I</td>
<td>M172–M179</td>
<td>58</td>
</tr>
<tr>
<td>Physiology and Endocrinology I</td>
<td>M180–M205</td>
<td>59</td>
</tr>
<tr>
<td>Production, Management, and the Environment I</td>
<td>M206–M229</td>
<td>61</td>
</tr>
<tr>
<td>Ruminant Nutrition I</td>
<td>M230–M325</td>
<td>63</td>
</tr>
</tbody>
</table>
SYMPOSIA AND ORAL SESSIONS

ADSA Dairy Foods Graduate Student Oral Competition ...18–2371

ADSA Graduate Student (MS) Production Oral Competition ...24–3571

ADSA Southern Section Graduate Student Oral Competition ..36–4272

Animal Behavior and Well-Being I ...43–4973

Animal Health I ...50–6174

Breeding and Genetics Symposium:
Inbreeding in the Genomics Era ...62–6775

Forages and Pastures I ...68–8075

Physiology and Endocrinology I ..81–9076

Production, Management, and the Environment I ..91–9977

Ruminant Nutrition Symposium:
Metabolomics Applications in Dairy Cow Metabolism ...100–10478

Ruminant Nutrition I ..105–11679

Small Ruminant Symposium:
New Opportunities for Dairy Sheep and Goats ..117–12280

Teaching/Undergraduate and Graduate Education Symposium:
Mentoring in Dairy Science ..123–12881

ADSA-SAD Dairy Foods Undergraduate Student Oral Competition ..129–13481

ADSA Production Division Symposium:
Future of the Dairy Sector Toward 2030 ..135–13982

ADSA Graduate Student (PhD) Production Oral Competition ...140–15182

ADSA Southern Section Symposium:
Key Considerations for Improving Milk Quality in the Southeast ...152–15583

ADSA-SAD Dairy Production Undergraduate Student Oral Competition156–16484

ADSA-SAD Original Research Undergraduate Student Oral Competition165–17384

Animal Health: Joint ADSA-National Mastitis Council Symposium:

Animal Health II ..184–19586

Bioethics Symposium:
Sustainable Dairy Farm ..196–19987
Breeding and Genetics I:
Fertility and Efficiency ... 200–211 87

Dairy Foods I:
Dairy Products ... 212–219 88

Extension Education .. 220–228 89

Forages and Pastures Symposium:
Multidimensional Functions of Forages and Pastures for Dairy Production ... 229–232 90

Physiology and Endocrinology II .. 233–242, 537 91

Production, Management, and the Environment II 243–250 92

Ruminant Nutrition Symposium:
Ruminal Metagenomics in Dairy Cattle—Beyond Microbial Diversity ... 251–255 92

Ruminant Nutrition II .. 256–267 93

Teaching/Undergraduate and Graduate Education I 268–271 94

Tuesday, June 27

POSTER PRESENTATIONS

Animal Behavior and Well-Being II ... T1–T10 95

Animal Health II .. T11–T43 95

Breeding and Genetics II ... T44–T53 98

Dairy Foods IV ... T54–T71 99

Dairy Foods V:
Cheese ... T72–T83 100

Dairy Foods VI:
Dairy Ingredients .. T84–T96 101

Food Safety .. T97–T100 102

Forages and Pastures II ... T101–T120, T295 102

Growth and Development II ... T121–T132 104

Lactation Biology II ... T133–T139, T297 105

Milk Protein and Enzymes ... T140, T142, T296, T298 106

Physiology and Endocrinology II ... T142–T169 106

Ruminant Nutrition II ... T193–T288 110

Small Ruminant II ... T289–T294 118
<table>
<thead>
<tr>
<th>SYMPOSIA AND ORAL SESSIONS</th>
<th>Abstract no.</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADSA Multidisciplinary and International Leadership (MILK) Symposium:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Dairy Cow in 50 Years</td>
<td>272–276</td>
<td>119</td>
</tr>
<tr>
<td>Animal Health III</td>
<td></td>
<td>119</td>
</tr>
<tr>
<td>Dairy Foods Symposium:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biofilm Formation on Dairy Separation Membranes</td>
<td>289–293</td>
<td>120</td>
</tr>
<tr>
<td>Dairy Foods II:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheese</td>
<td>294–299</td>
<td>121</td>
</tr>
<tr>
<td>Growth and Development I</td>
<td></td>
<td>121</td>
</tr>
<tr>
<td>Physiology and Endocrinology III</td>
<td></td>
<td>122</td>
</tr>
<tr>
<td>Precision Dairy Farming Symposium:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision Dairy (PD) Management Today</td>
<td>315–318</td>
<td>123</td>
</tr>
<tr>
<td>Production, Management, and the Environment III</td>
<td>319–326</td>
<td>123</td>
</tr>
<tr>
<td>Ruminant Nutrition III</td>
<td>327–338</td>
<td>124</td>
</tr>
<tr>
<td>Small Ruminant</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>ADSA-American Society for Nutrition Symposium:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the Amount and Type of Fat That You Eat Matter?</td>
<td>346–349</td>
<td>126</td>
</tr>
<tr>
<td>Animal Behavior and Well-Being II</td>
<td></td>
<td>126</td>
</tr>
<tr>
<td>Animal Health Symposium:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotics and Animal Agriculture: Outlook for the Upcoming Years</td>
<td>357–359</td>
<td>127</td>
</tr>
<tr>
<td>Animal Health IV</td>
<td>360–370</td>
<td>127</td>
</tr>
<tr>
<td>Breeding and Genetics II:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health</td>
<td>371–382</td>
<td>128</td>
</tr>
<tr>
<td>Dairy Foods Symposium:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emerging Research and Insights to Drive Innovations in Fluid Milk</td>
<td>383–387</td>
<td>129</td>
</tr>
<tr>
<td>Dairy Foods III:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbiology</td>
<td>388–392</td>
<td>130</td>
</tr>
<tr>
<td>Growth and Development Symposium:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbial Endocrinology in Ruminant Growth and Development</td>
<td>393–395</td>
<td>131</td>
</tr>
<tr>
<td>Lactation Biology I</td>
<td>396–406</td>
<td>131</td>
</tr>
<tr>
<td>Production, Management, and the Environment IV</td>
<td>409–416</td>
<td>132</td>
</tr>
<tr>
<td>Ruminant Nutrition IV</td>
<td>417–428</td>
<td>133</td>
</tr>
<tr>
<td>Ruminant Nutrition V</td>
<td>429–440</td>
<td>134</td>
</tr>
</tbody>
</table>
Wednesday, June 28

Milk Protein and Enzymes Symposium:
 Protein Interactions—Aggregations and Interfaces ... 441–445 136

Ruminant Nutrition VI .. 446–457 136

Breeding and Genetics III:
 Methods .. 458–470 137

Animal Behavior and Well-Being Symposium:
 Allowing for Natural Behavior in Dairy Cattle .. 471–474 138

Dairy Foods Symposium:
 Biology LAB Symposium: Recent Developments in Lactic Acid Bacteria 475–479 139
 Dairy Foods IV:
 Dairy Ingredients .. 480–486, 408 139
 Lactation Biology II .. 487–497 140

Physiology and Endocrinology Symposium:
 Mediators of Effects of Stress on Reproduction, Growth, and Lactation 498–503 141

Physiology and Endocrinology IV ... 504–510 141

Production, Management, and the Environment Symposium:
 Greenhouse Gas Emissions from Dairy Operations .. 512–516 142

Production, Management, and the Environment V ... 517–522 143

Dairy Foods Symposium:
 Chr. Hansen Symposium: Microbial Ecology of Cheese ... 523–527 144

OTHER EVENTS

Mixed Models Workshop ... 144

Thursday, June 29

Teagasc-Moorepark/University College Cork Cheese Symposium .. 528–536 145

Recorded Symposia Presentations

All symposia at the 2017 ADSA Annual Meeting are being recorded and will be available free of charge to meeting attendees shortly after the meeting ends for a period of 60 days. Thereafter, recordings will be available for purchase. Please note that individual presentations may be excluded from a symposium recording if presenter permission was not granted. The ‘REC’ icon in the scientific program indicates that a presentation is being recorded.
Sunday, June 25

SYMPOSIA AND ORAL SESSIONS

ADSA Lactation Symposium
Chair: Laura Hernandez, University of Wisconsin
Room 303

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 AM</td>
<td>1. Introduction. Laura Hernandez.</td>
</tr>
<tr>
<td>8:35 AM</td>
<td>2. Effects of dietary fatty acids on nutrient digestion, energy partitioning, and milk fat synthesis. A. L. Lock* and J. de Souza, Michigan State University, East Lansing, MI.</td>
</tr>
<tr>
<td>9:35 AM</td>
<td>3. Amino acid uptake by the mammary glands: Where does the control lie? J. P. Cant**, J. J. M. Kim¹, S. R. L. Cieslar¹, and J. Doelman², ¹University of Guelph, Guelph, ON, Canada, ²Nutreco Nederland BV, Boxmeer, the Netherlands.</td>
</tr>
<tr>
<td>11:35 AM</td>
<td>Lunch (provided)</td>
</tr>
<tr>
<td>12:35 PM</td>
<td>5. The disparate impacts of inflammatory signaling pathways on lactogenesis, galactopoiesis, and cessation of lactation. B. J. Bradford*, C. M. Ylioja¹, and K. M. Daniels², ¹Kansas State University, Manhattan, KS, ²Virginia Polytechnic Institute and State University, Blacksburg, VA.</td>
</tr>
</tbody>
</table>

National Animal Nutrition Program (NANP) Nutrition Models Workshop
Chair: John McNamara, Washington State University
Sponsors: NANP and McNamara Research Fund in Agriculture Firm LLC
Room 304-305

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 AM</td>
<td>Welcoming remarks. J. McNamara.</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>7. Dynamic deterministic models. T. Hackmann*, University of Florida, Gainesville, FL.</td>
</tr>
<tr>
<td>10:50 AM</td>
<td>Break</td>
</tr>
<tr>
<td>11:10 AM</td>
<td>8. Estimation of parameter values in nutrition models. L. Moraes*, The Ohio State University, Columbus, OH.</td>
</tr>
<tr>
<td>12:00 PM</td>
<td>Lunch (provided)</td>
</tr>
<tr>
<td>1:00 PM</td>
<td>9. Model evaluation. E. Kebreab*, University of California-Davis, Davis, CA.</td>
</tr>
</tbody>
</table>
Example models for ruminant digestion and metabolism.
H. A. Rossow*, Veterinary Medicine Teaching and Research Center, University of California-Davis, Tulare, CA.

Break

Meta-regression analysis of animal nutrition literature.
R. R. White*, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA.

Closing remarks.
Timothy Hackmann.

Workshop: The Impact of Raw Milk Quality on Dairy Products
Chair: Kerry Kaylegian, Pennsylvania State University
Room 307

Opening remarks.
K. Kaylegian, Pennsylvania State University.

Milk component quality and variation.
K. Kaylegian, Pennsylvania State University.

Iron and copper in farm and plant water and impact on milk flavor.
S. Duncan, Virginia Tech.

Break

Effect of raw milk microbial quality on the quality of cheese and dairy products.
L. Goddik, Oregon State University.

Lunch (provided)

Effect of feed source on quality of cheese and dairy products.
S. Clark, Iowa State University.

Best milking practices for high quality milk.
G. Fenton, Pennsylvania State University.

Milk quality and safety from udder to tank.
E. Hovingh, Pennsylvania State University.

Break

Panel Q&A.

Closing remarks.
K. Kaylegian, Pennsylvania State University.
Teaching Workshop: Helping Students Learn
Chair: Michel Wattiaux, University of Wisconsin-Madison
Room 308

1:00 PM Workshop introduction: Setting expectations.
A. Faciola, University of Nevada.

1:10 PM 12 How to teach and how to learn effectively: A review of the recent literature.
M. A. Wattiaux*, A. Faciola2, and C. C. Williams3, 1University of Wisconsin-Madison, Madison, WI, 2University of Nevada, Reno, NV, 3Louisiana State University, Baton Rouge, LA.

1:50 PM Orientation to breakout groups.
C. Williams, Louisiana State University.

2:00 PM Breakout Sessions (see below)

3:05 PM Report from breakout sessions

4:35 PM Workshop evaluation and next steps

Teaching Workshop: Breakout Sessions

Breakout session: How does students’ prior knowledge affect their learning?
Amin Ahmadzadeh, University of Idaho.

Breakout session: How does the way students organize knowledge affect their learning?
Peter Erickson, University of New Hampshire.

Breakout session: What factors motivate students to learn?
Martin Maquivar, Washington State University.

Breakout session: How do students develop mastery?
Marina Danes, University of Lavras, Brazil.

Breakout session: What kinds of practice and feedback enhance learning?
Cathleen Williams, Louisiana State University.

Breakout session: Why do student development and course climate matter for student learning?
Antonio Faciola, University of Nevada.

Breakout session: How do students become self-directed learners?
Michel Wattiaux, University of Wisconsin-Madison.
SYMPOSIA AND ORAL SESSIONS

Dale Bauman Recognition Symposium and Reception
Chair: Rodney K. McGuffey, McGuffey Consulting
Room 301-302

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
</table>
| 3:00 PM| **13** Introduction: Contributions of Dale E. Bauman to the world of dairy science.
| 3:15 PM| **14** Dale Bauman Symposium—The early years at the University of Illinois.
J. P. McNamara*, McNamara Research in Agriculture Firm, Pullman, WA. |
| 3:50 PM| **15** Homeorhesis and nutrient partitioning.
R. Collier*, University of Arizona, Tucson, AZ. |
| 4:25 PM| **16** Dr. Dale E. Bauman: Training graduate students and solving the riddle of milk fat depression (MFD).
L. Baumgard*, Iowa State University, Ames, IA. |
| 5:00 PM| **17** On being a scientist—Experiences and reflections.
Dale E. Bauman*, Cornell University, Ithaca, NY. |
| 5:20 PM| Reception |

OTHER EVENTS

Late-Breaking Original Research Session
Room 310-311
3:00 to 5:00 PM

Opening Session and Reception
Convention Center, Ballroom A and Gallery
7:30 to 10:00 PM
Monday, June 26

POSTER PRESENTATIONS

ADSA Dairy Foods Graduate Student Poster Competition

M1 Protein biopolymer molecular structure determined protein supply during gastrointestinal digestion.
N. Xu*1,2, J. Liu3, and P. Yu4,1, Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada, 2Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China.

M2 Preparation of milk protein concentrates by ultrafiltration and continuous diafiltration: Effect of process design on overall efficiency.
C. Gavazzi-April*,1, S. Benoit1, A. Doyen1, M. Britten2, and Y. Pouliot3, 1STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Department of Food Science, Université Laval, Québec, Québec, Canada, 2Food Research and Development Center (FDRC), Agriculture and Agri-Food Canada, St-Hyacinthe, Québec, Canada.

M3 Influence of Bacillus spp. on microstructure, graininess, lipolysis and sensory properties of sour cream.
D. Mehta*,1, L. Metzger1, A. Hassan2, and B. Nelson2, 1Dairy and Food Science Department, South Dakota State University, Brookings, SD, 2Daisy Brand, Garland, TX.

M4 Preliminary studies on the effect of cooling rate on lactose crystallization characteristics in deproteinized whey (DPW).
K. Pandaleni* and J. Amamcharla, Kansas State University, Manhattan, KS.

M5 Preliminary studies on monitoring storage changes in milk protein concentrates using front-face fluorescence spectroscopy and chemometrics.
K. S. Babu* and J. Amamcharla, Kansas State University, Manhattan, KS.

M6 Sensory characteristics of Cheddar-type caprine milk cheeses supplemented with microencapsulated and normal ferrous sulfate.
A. Siddique* and Y. W. Park, Fort Valley State University, Fort Valley, GA.

M7 The influence of casein as a percentage of true protein on the physical and sensory properties of skim milk beverages.
N. Cheng*,1, D. M. Barbano2, and M. A. Drake1, 1North Caroline State University, Raleigh, NC, 2Cornell University, Ithaca, NY.

M8 Components of procream and cream improve the viability of yogurt and probiotic bacteria.
B. Chinnasamy*, K. Choquette, and S. Clark, Iowa State University, Ames, IA.

M9 Effect of pectin on digestion properties and β-carotene delivery of whey protein-stabilized emulsions.
Y. Tang* and B. Vardhanabhuti, Food Science Department, University of Missouri, Columbia, MO.

M10 The effect of different solids concentration on the drying kinetics of whey protein concentrate.
H. N. Vora*,1, L. E. Metzger3, C. Selomulya2, M. W. Woo2, and A. Putranto3, 1Dairy and Food Science Department, South Dakota State University, Brookings, SD, 2Department of Chemical Engineering, Monash University, Clayton, VIC, Australia.

M11 Withdrawn

M12 Feasibility of soluble soybean polysaccharide for enhancing lactose crystallization during lactose manufacture.
V. Sunkesula*, L. E. Metzger, and S. L. Beckman, Midwest Dairy Foods Research Center, South Dakota State University, Brookings, SD.

M13 Moved to Dairy Foods I: Chemistry I (page 53)

M14 Improving emulsification properties of whey protein isolate by heating with pectin at near neutral pH.
Y. Wang* and B. Vardhanabhuti, Food Science Department, University of Missouri, Columbia, MO.

M15 Level of Listeria cross contamination in ice cream mix can serve as a predictor of its overall risk from injured cells.
N. Neha*,1, S. Suliman2, S. Anand1,2, G. Djira3, B. Kraus4, and S. Sutariya5, 1Midwest Dairy Foods Research Center, Brookings, SD, 2Department of Dairy and Food Science, South Dakota State University, Brookings, SD, 3Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, 4Wells Enterprises Inc., Le Mars, IA.
M16 Reduction of *Zygosaccharomyces parabailii* in dairy-based salad dressings using different combinations of acidulants. A. Meldrum* and H. Joyner, University of Idaho, Moscow, ID.

M17 Maintaining high level of intact casein in Cheddar cheese during aging. B. M. Riebel*1, S. Govindasamy-Lucey2, J. J. Jaeggi2, M. E. Johnson2, and J. A. Lucey1,2, 1University of Wisconsin-Madison, Madison, WI, 2Wisconsin Center for Dairy Research, Madison, WI.

ADSA Graduate Student (MS) Production Poster Competition

M18 Effect of delaying colostrum feeding on passive transfer and intestinal bacterial colonization in neonatal male Holstein calves. A. Fischer*, Y. Song, Z. He, L. Guan, and M. Steele, University of Alberta, Edmonton, AB, Canada.

M19 The effect of dietary supplementation of monobutyrin on growth and intestinal morphophysiology of preweaning Holstein calves. L. K. Hilligsøe*1,2, J. E. Mendez1, A. M. Ehrlich1, R. Sygall1, H. Raybould1, and P. Ji1, 1University of Copenhagen, Copenhagen, Denmark, 2University of California, Davis, Davis, CA.

M21 Effect of prepartum dietary calcium and DCAD concentration on colostrum quality and newborn calf blood mineral and gas concentration. A. L. Diehl1, J. K. Bernard1, S. Tao1, T. N. Smith1, T. Marins1, D. J. Kirk2, D. J. McLean1, and J. D. Chapman1, 1University of Georgia, Tifton, GA, 2Phibro Animal Health, Corp, Teaneck, NJ.

M22 Effect of automatically recorded body condition score at calving on subclinical hyperketonemia. C. Truman*, I. Mullins, M. Falk, and J. Bewley, University of Kentucky, Lexington, KY.

M23 Immunological and metabolic responses of lactating dairy cows fed diets supplemented with exogenous β-mannanase enzyme (CTCzyme). B. M. Roque*1, C. E. Reyes1, J. A. D. R. N. Appuhamy1, T. A. Tewoldebrhan1, J. J. Lee3, S. Seo3, and E. Kebreab1, 1Department of Animal Science, University of California, Davis, Davis, CA, 2CTCBio Inc., Seoul, Republic of Korea, 3Department of Animal Biosystem Sciences, Chungnam National University, Daejeon, Republic of Korea.

M24 Evaluation of commonly used atmospheric carbon dioxide concentrations for the culture of bovine *Mycoplasma* spp. J. L. Lowe*1, B. D. Enger1, L. K. Fox1, A. Adams Progar1, and J. M. Gay1, 1Washington State University, Pullman, WA, 2Virginia Polytechnic Institute and State University, Blacksburg, VA.

M25 Feed efficiency and reproductive performance are genomically independent in lactating Holstein cows. E. M. Bart*1, M. D. Hanigan1, D. M. Spurlock1, M. J. VandeHaar1, and R. R. Cockrum1, 1Virginia Polytechnic Institute and State University, Blacksburg, VA, 2Iowa State University, Ames, IA, 3Michigan State University, East Lansing, MI.

M26 Differences in lying behavior between Jersey and Holstein dairy cattle during the transition period. K. L. Kutina*, O. C. Duner, Y. I. Ruiz, E. A. Whisler, and J. M. Huzzey, California Polytechnic State University, San Luis Obispo, CA.

ADSA Graduate Student (PhD) Production Poster Competition

M27 Assessment of microbiota and short-chain fatty acids profiles in the hindgut of pre-weened dairy calves. Y. Song*1, N. Malmuthuge1,2, M. A. Steele1, and L. L. Guan1, 1Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, 2Vaccine and Infectious Disease Organization-International Vaccine Centre University of Saskatchewan Saskatoon, Saskatchewan, SK, Canada.
M28 Role of galectins 3 and 9 in the immunity of periparturient dairy cows.
E. Asiamah*1, S. Adjei-Fremah1, K. Ekwemalog1, M. Worku1, L. Sordillo2, and J. Gandy3, 1North Carolina A&T State University, Greensboro, NC, 2Michigan State University, East Lansing, MI.

M29 Effects of timing of C16:0 supplementation on production and metabolic responses of early lactation dairy cows.
J. de Souza* and A. L. Lock, Michigan State University, East Lansing, MI.

M30 Fetuin-A as a marker of adipose tissue function in transition dairy cows.

M31 Effects of oral administration of acetylsalicylic acid after parturition on activity patterns, prevalence of diseases, mortality and culling rates in dairy cows.
A. A. Barragan*1, L. M. Bauman2, J. Velez1, J. D. Rozo Gonzalez2, G. M. Schuenemann1, and S. Bas1, 1Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 2Department of Animal Sciences, The Ohio State University, Columbus, OH, 3Aurora Organic Farms, Boulder, CO.

M32 Preliminary evaluation of the DeLaval Cell Counter’s ability to quantify somatic cell counts in nonlactating bovine mammary secretions.
B. D. Enger*, C. E. Crutchfield1, S. C. Nickerson2, C. L. M. Parsons1, and R. M. Akers1, 1Virginia Polytechnic Institute and State University, Blacksburg, VA, 2University of Georgia, Athens, GA.

M33 Bovine mammary epithelial cell (MAC-T) phenotype impacts TNFα-mediated MAPK signaling and inflammation.
L. G. Silva*, B. S. Ferguson1, L. Hernandez2, and A. P. Faciola1, 1University of Nevada, Reno, NV, 2University of Wisconsin, Madison, WI.

M34 Prediction algorithms for early detection of clinical mastitis caused by gram-positive and gram-negative pathogens.
N. M. Steele*1,3, A. Tholen1, A. De Vries2, S. J. Lacy-Hultber1, R. R. White4, and C. S. Peterson-Wolfe1, 1Department of Dairy Science, Virginia Tech, Blacksburg, VA, 2Department of Animal Sciences, University of Florida, Gainesville, FL, 3DairyNZ Ltd., Private Bag 3221, Hamilton, New Zealand, 4Department of Animal and Poultry Science, Blacksburg, VA.

M35 Uptake of a fluorescent glucose analog (2-NBDG) by mixed rumen bacteria.

M36 Effects of replacing soybean meal with canola meals varying in rumen undegraded protein on ruminal fermentation in vitro.
H. F. Monteiro*1, E. M. Paula1, J. L. P. Daniel1, P. D. B. Benedetti1, R. Bittner1, L. G. Silva1, T. Shenkor1, and A. P. Faciola1, 1University of Nevada, Reno, Reno, NV, 2State University of Maringá, Maringá, PR, Brazil, 3Federal University of Viçosa, Viçosa, MG, Brazil.

M37 Evaluation of the NRC predictions in response to changes in dietary rumen degraded and undegraded protein on dairy cows exposed to warm climates.
J. D. Kaufman* and A. G. Rius, The University of Tennessee, Knoxville, TN.

M38 Relationship between ano-genital distance and fertility in Holstein cows.
M. Gobikrushanth*1, T. C. Bruinjé1, M. G. Colazo2, and D. J. Ambrose1,2, 1Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, 2Livestock Research Section, Alberta Agriculture and Forestry, Edmonton, AB, Canada.

M39 The effect of body condition loss on hepatic and ovarian tissue function in dairy cattle.
Y. Schuermann*1, A. St. Yves1, N. Dicks1, V. Higginson1, R. Bohrer1, M. Taibi1, E. Madogwe1, A. Mustafa1, V. Bordignon1, B. Baurhoo2, and R. Duggavath1, 1McGill University, Montreal, QC, Canada, 2Belisle Nutrition Solutions Inc., Saint-Mathias-sur-Richelieu, QC, Canada.

M40 Fungal treatment of lower part of corn stem does not improve its nutritional value.
Y. He*, J. Dijkstra1, R. A. M. Sonnenberg2, T. M. B. Mouthier1, M. A. Kabel1, W. H. Hendriks2, and J. W. Cone3, 1Animal Nutrition Group, Wageningen University & Research, Wageningen, the Netherlands, 2Plant Breeding, Wageningen University & Research, Wageningen, the Netherlands, 3Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands.

M41 Evaluation of two adsorbents after an aflatoxin challenge in Holstein cows.
M. E. Weatherly*1, R. T. Pate1, G. E. Rottinghaus2, F. de Oliveira Roberti Filho1, and F. C. Cardoso1, 1Department of Animal Sciences, University of Illinois, Urbana, IL, 2Veterinary Medical Diagnostic Lab, University of Missouri, Columbia, MO, 3Biorganin, São Paulo, Brazil.
Producer perception of precision dairy monitoring technology health alerts.
E. Eckelkamp* and J. Bewley, University of Kentucky, Lexington, KY.

ADSA-SAD Original Research Undergraduate Student Poster Competition

The effects of vanilla flavoring in calf starter on calf starter intake.
A. Tomei* and S. Kehoe, University of Wisconsin-River Falls, River Falls, WI.

Economic analysis of feeding costs for diets including corn silage or sorghum silage as the main forage source.
E. S. Richardson* and G. Ferreira, Department of Dairy Science, Virginia Tech, Blacksburg, VA.

Comparison of two housing systems and dairy calf physiological responses during hot weather.
H. A. Young*, A. Adams Progar, and A. Lopez Ayala, Washington State University, Pullman, WA.

Coordinated response of hepatic lipolysis during the transition to lactation in dairy cows.

Production responses to supplementation with rumen-protected lysine and two sources of rumen-protected methionine in Holstein cows.
C. R. Seely*, S. E. LaCount, C. M. Ryan, K. E. Griswold, and T. R. Overton, Cornell University, Ithaca, NY, Kemin Industries, Des Moines, IA.

Formation and characterizations of heated whey protein isolate and alginate complexes.
S. Khumsangkha* and B. Vardhanabhuti, University of Missouri Columbia, Columbia, MO.

Influence of heated whey protein isolate and pectin complex on properties and stability of O/W emulsions at different pH.
P. Sukkha*, A. Kotchabhad, and B. Vardhanabhuti, University of Missouri Columbia, Columbia, MO.

Evaluating teat skin condition in response to phenoxyethanol as a post-milking teat disinfectant on lactating dairy cows.
S. K. Reeves*, M. R. Borchers, and J. M. Bewley, Department of Animal and Food Sciences, University of Kentucky, Lexington, KY.

Behavioral traits of dairy cattle in group calving pens.
E. A. Whisler*, K. L. Kutina, O. C. Duner, Y. I. Ruiz, and J. M. Huzzey, California Polytechnic State University, San Luis Obispo, CA.

Relationship of body condition changes during the first 30 d of lactation and pregnancy rate per AI at 75 to 81 DIM.
E. L. Middleton* and J. R. Pursley, Michigan State University, East Lansing, MI.

Flaxseed containing lipid supplement increases linearly omega-3 content in milk without compromising production parameters.
S. Akers*, R. Wilson, K. Swanson, M. Keller, L. Goddick, G. Cherian, R. Day, and G. Bobe, Oregon State University, Corvallis, OR, N3Feed, Tualatin, OR.

Animal Behavior and Well-Being I

Sampling strategies for dairy cow welfare assessments.
J. Van Os*, C. Winckler, J. Trieb, S. Matarazzo, T. Lehenbauer, J. Champagne, and C. Tucker, Department of Animal Science, University of California-Davis, CA, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria, Department of Agricultural and Environmental Sciences, Santa Cruz State University, Ilhéus, Brazil, Veterinary Medicine Teaching and Research Center, University of California-Davis, Tulare, CA.
Associations between on-farm animal welfare indicators, farm productivity, and profitability on Canadian freestall dairies.
1Université Laval, Québec, QC, Canada, 2University of British Columbia, Agassiz, BC, Canada, 3McGill University, Ste-Anne-de-Bellevue, QC, Canada, 4University of Guelph, Guelph, ON, Canada, 5University of Calgary, Calgary, AB, Canada.

Prevalence of lameness and leg injuries on US freestall dairies.
Animal Welfare Program, University of British Columbia, Vancouver, BC, Canada.

Changes in lying behavior in response to lameness.
1Animal Welfare Program, Faculty of Land and Food systems, University of British Columbia, Vancouver, BC, Canada, 2Laboratório de Eologia Aplicada e Bem-Estar Animal, Departamento de Zootecnia e Desenvolvimento Rural, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.

Early non-invasive clinical diagnosis of hoof ulcers by infrared thermographic images (IRT) in milking dairy cows.
S. Vázquez-Flores* and C. Lucio-Rodriguez.
Tecnologico de Monterrey Campus Queretaro, Queretaro, Mexico.

Evaluation of the relationship between prepartal ruminal and mammary gland temperature and calving day in dairy cows.
F. Batistel*, E. Gonzalez-Angulo, C. I. M. Garces, and J. J. Loor.
University of Illinois at Urbana-Champaign, Urbana, IL.

Effect of ketosis on behavioral activity in transition dairy cows.
1Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 2Department of Animal Sciences, The Ohio State University, Wooster, OH.

Effect of prepartum behavioral activity on stillbirth in transition dairy heifers and cows.
1Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 2Department of Animal Sciences, The Ohio State University, Wooster, OH.

Effects of mammary biopsy on behavior of dairy cows.
University of Florida, Gainesville, FL.

Relationship between the clinical and behavioral response to a mastitis challenge with Streptococcus uberis from Holstein dairy cows.
The University of Tennessee, Department of Animal Science, Knoxville, TN.

Animal Health I

Effect of CalfAce on performance and health of Holstein dairy calves.
M. Cooney*, D. Cooke, and R. James.
1phdR&D, Fort Atkinson WI, 2R&D Life Sciences, Menomonie, WI, 3Virginia Tech, Blacksburg, VA.

Effect of lameness on behavioral activity in transition dairy cows.
1Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 2Department of Animal Sciences, The Ohio State University, Wooster, OH.

Pre- and postweaning performance and health of dairy calves fed milk replacers supplemented with various additives.
1University of Minnesota, Waseca, MN, 2Milk Products Inc., Chilton, WI, 3Hubbard Feeds Inc., Mankato, MN.

Effects of non-digestible saccharides on passive immunoglobulin G transfer and serum immunoglobulin G concentration in newborn calves fed colostrum replacer.
1United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, Japan, 2Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
M68 Pre- and postweaning performance and health of dairy calves fed milk replacers supplemented with different strains of direct-fed microbials.

M69 Effects of Protemace on the performance and small intestinal health of Jersey calves challenged with Salmonella enterica serotype Typhimurium at 7 day of life.
Y. Liang*, R. Hudson, and M. Ballou, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX.

M70 Risk factors for retained placenta and metritis in grazing dairy herds.
R. R. Daros*1, M. J. Hötzel2, S. J. LeBlanc3, J. A. Brown2, A. J. Thompson1, and M. A. G. von Keyserlingk1. 1Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, 2Laboratório de Etologia Aplicada e Bem-Estar Animal, Departamento de Zootecnia e Desenvolvimento Rural, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil, 3Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.

M71 The determination of concentrations of tocopherol isomers in whole tissues and mitochondria via high-performance liquid chromatography after short-term supplementation in dairy cows.
Y. Qu*1, T. H. Elsasser2, S. Kahl3, M. Garcia4, C. M. Scholte4, E. E. Connor5, G. F. Schroeder6, and K. M. Moyes7. 1Department of Animal and Avian Science, University of Maryland, College Park, MD, 2Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, USDA, Beltsville, MD, 3Agricultural Research Service, Animal Genomics and Improvement Laboratory, USDA, Beltsville, MD, 4Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, 5Cargill Animal Nutrition, Elk River, MN.

M72 Exploring lameness across a lactation through the eyes of a fatty pad.
C. Stambuk*, H. Huson, and R. Bicalho, Cornell University, Ithaca, NY.

M73 Uterine microbiome, antibiotic resistance genes and virulence factors of metritic treated cows that cure or failed to cure from metritis.
Z. Zhou*, M. S. Gomes, I. F. Canisso, E. F. Garrett, J. S. Stewart, and F. S. Lima, University of Illinois, Champaign-Urbana, IL.

M74 Water intake of transported Holstein dairy calves classified as sick or healthy in the first 21 d.

J. A. Snodgrass1, A. Vieira-Neto1, R. S. Bisinotto2, E. S. Ribeiro1, N. Martinez3, K. N. Galvao2, J. E. P. Santos2, and F. S. Lima4. 1University of Illinois, Champaign-Urbana, IL, 2University of Florida, Gainesville, FL, 3University of Guelph, Guelph, ON, Canada, 4Zoetis, Kalamazoo, MI.

M76 Associations of gait score, lying behavior, hygiene, and body condition score between dairy cows with low and high somatic cell counts.
A. Zambelis*, I. Robles, and T. J. DeVries, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.

M77 Effect of an accelerated growth feeding protocol on the weight gain of Holstein calves under tropical conditions.

M78 Impact of housing, environment and management on respiratory illness in pre-weaned calves.

M79 Effects of the addition of electrolyzed water to a footbath solution on digital dermatitis incidence.
H. K. Himmelmann*, B. W. Jones, and J. M. Bewley, University of Kentucky, Lexington, KY.

M80 Management practices and prevalence of bovine respiratory disease in pre-weaned dairy calves in California.
B. M. Karle*1, G. Maier1, S. A. Dubrovsky2, W. J. Love3, D. R. Williams1, J. W. Stackhouse3, R. J. Anderson4, A. L. Van Eenennaam1, T. W. Lehenbauer5, and S. S. Aly6. 1University of California Cooperative Extension, Orland, CA, 2UC Davis Veterinary Medicine Teaching and Research Center, Tulare, CA, 3Department of Animal Science, University of California, Davis, CA, 4University of California Cooperative Extension, Eureka, CA, 5California Department of Food and Agriculture, Animal Health Branch, Sacramento, CA, 6Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA.
Effect of calving stress on feed intake of dairy cows soon after calving.
M. Reshalaitihan1*, K. Matsuki1, T. Sato1, and M. Hanada1, 1United Graduate School of Agricultural Science, Iwate University, Morioka, Iwate, Japan, 2Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.

Transgenerational effects of postpartum inflammatory diseases in dairy cows.
M. R. Carvalho1*, F. Peñagaricano2, J. E. Santos2, T. J. DeVries1, B. McBride1, and E. S. Ribeiro1, 1Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, 2Department of Animal Sciences, University of Florida, Gainesville, FL.

Colostrum mineral concentrations and their association with calcemic status at calving in Jersey cows.
J. Chiozza-Logroño1*, A. Valdecabres1, A. Lago1, and N. Silva-del-Río1, 1Veterinary Medicine Teaching and Research Center, University of California Davis, Tulare, CA, 2DairyExperts Inc., Tulare, CA.

Association of colostrum Ca concentration at first and second milking with postpartum serum Ca concentration.
J. Chiozza-Logroño1*, A. Valdecabres1, R. Rearte1, A. Lago1, and N. Silva-del-Río1, 1Veterinary Medicine Teaching and Research Center, University of California Davis, Tulare, CA, 2Cátedra de Higiene, Epidemiología y Salud Pública, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV–UNLP), La Plata, Argentina, 3DairyExperts Inc., Tulare, CA.

Metabolic and inflammatory changes in blood of lactating Holstein cows induced to subacute ruminal acidosis.
F. Rosa1*, J. C. McCann2, E. Trevisi3, F. Cardoso2, J. J. Loor2, and J. S. Osorio1, 1South Dakota State University, Brookings, SD, US, 2University of Illinois, Champaign-Urbana, IL, US, 3Universita Cattolica del Sacro Cuore, Piacenza, Italy.

Liquid chromatography-mass spectrometry metabolic serum signatures indicate global and disease-specific challenges in protein and fatty acid metabolism precede retained placenta in dairy cows.
F. Zandkarimi, C. Maier, and G. Bobe*, Oregon State University, Corvallis, OR.

Polyphenolic extract from cowpea (Vigna unguiculata) modulates galectin 3 and 9 expression in bovine peripheral blood.
S. Adjei-Fremah*, E. Asiamah, K. Ekwemalor, and M. Worku, North Carolina A&T State University, Greensboro, NC.

A statewide survey of colostrum management practices on organic dairy farms in Ohio.
L. da Costa1* and K. Bohland3, 1Department of Preventive Medicine, The Ohio State University, Columbus, OH, 2The Ohio State University, Columbus, OH.

A comparison of hair cortisol concentrations between various sampling sites of the body and blood cortisol in lactating Holstein cows and heifers.

Upregulation of nitric oxide synthases and natriuretic peptides in healthy controls compared with pulmonary arterial hypertension Holstein heifers exposed to chronic hypobaric hypoxia.
S. Wang1, Y. Wang1, S. Li1, D. Han1, Q. Shi1, and S. Ji1*, 1College of Animal Science and Technology, China Agricultural University, Beijing, China, 2College of Veterinary Medicine, China Agricultural University, Beijing, China, 3Clinical Laboratory of General Hospital of Tibet Military Command, Lhasa, China.

Use of calciotril to reduce subclinical hypocalcemia and improve postpartum health in dairy cows.
M95 Withdrawn

M96 Reproductive toxicity of bisphenol A in male New Zealand White rabbits.
H. Karabulut and M. S. Gulay*, Mehmet Akif Ersoy University, Burdur, Turkey.

M97 Safety evaluation of punicalagin in male New Zealand White rabbits.
H. Karabulut* and M. S. Gulay, Mehmet Akif Ersoy University, Burdur, Turkey.

M98 Subacute bisphenol A toxicity in male New Zealand White rabbits.
H. Karabulut and M. S. Gulay*, Mehmet Akif Ersoy University, Burdur, Turkey.

M99 Omnipen supplementation during the first 150 days of life decreases the incidence of tick fever in dairy calves.
B. B. Leme*1, L. F. Barbosa2,1, I. C. Marabiza4, A. C. Mariano4, S. H. Casonato4, and J. L. M. Vasconcelos3,1, 1Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo, Brazil, 2Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil, 3Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 4Fazenda Agrindus S/A, Descalvado, São Paulo, Brazil.

Breeding and Genetics I

M100 Genetic evaluation of gestation length as a trait of the service sire.
J. R. Wright* and P. M. VanRaden, Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD.

M101 Genetic correlations among Canadian selected traits: literature review and completion of the matrix of correlations.
P. Martin*1, C. Baes2, K. Houlahan3, S. Beard4, C. Richardson5, and F. Miglior3, 1University of Guelph, Department of Animal Biosciences, Guelph, ON, Canada, 2Canadian Dairy Network, Guelph, ON, Canada.

M102 Breeding strategies for mitigating enteric methane emissions of dairy cattle using ZPLAN+.
S. Beard*1, F. Miglior2,3, F. Schenkel2, B. Gredler3, P. Martin1, A. Fleming1, and C. Baes1, 1Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada, 2Canadian Dairy Network, Guelph, ON, Canada, 3Qualitas AG, Zug, Switzerland.

M103 Genome-wide copy number variant analysis in Holstein cattle reveals variants associated with 10 production traits including residual feed intake and dry matter intake.
E. E. Connor*1, Y. Zhou1,3, G. R. Wiggans1, Y. Lu1, R. J. Tempelman1, S. G. Schroeder1, H. Chen1, and G. Liu1, 1USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD, 2Michigan State University, East Lansing, MI, 3Northwest A&F University, Yangling, Shaanxi, China.

M104 Association of residual feed intake with disease indicator traits in Holsteins.
D. Hailemariam*1, G. Manafiazar1, J. Basarab1,2, F. Miglior1,4, G. Plastow1, and Z. Wang1, 1Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, 2Alberta Agriculture and Forestry, Lacombe Research Centre, Lacombe, AB, Canada, 3Canadian Dairy Network, Guelph, ON, Canada, 4CGIL Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.

M105 Use of RNA-Sequencing technology for detection of microbial species.
S. Lam*1, F. Miglior1,2, L. L. Guan1, A. Islas-Trejo1, D. Seymour1, V. Asselstine1, L. F. Brito1, J. F. Medrano1, and A. Cánovas1, 1Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada, 2Canadian Dairy Network, Guelph, ON, Canada, 3Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, 4Department of Animal Science, University of California-Davis, Davis, CA.

M106 Genetic trends of linear type traits for validation of genomic evaluation in US Holsteins.
S. Tsuruta*1, T. J. Lawlor2, D. A. L. Lourenco1, Y. Masuda1, and I. Misztal1, 1University of Georgia, Athens, GA, 2Holstein Association USA, Brattleboro, VT.

M107 Sources of variation in minor milk components and their potential prediction using mid-infrared spectroscopy.
A. Fleming*1, F. S. Schenkel1, S. Nayeri1, C. Baes2, R. A. Ali3, M. Corredig4,5, and F. Miglior1, 1Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, 2Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada, 3Department of Animal Science, University of Guelph, Guelph, ON, Canada, 4Gay Lea Foods Co-operative, Mississauga, ON, Canada, 5Canadian Dairy Network, Guelph, ON, Canada.
Dairy Foods I:
Chemistry I

M13
Dry heat treatment affects solubility, whey protein denaturation, and soluble aggregates formation in nonfat dry milk.
K. S. Alán and K. Schmidt*, Kansas State University, Manhattan, KS.

M108
Rapid determination of lactulose in heat-treated milk using ultraperformance convergence chromatography coupled with mass spectrometry.
F. Wen1,2, Y. Tian1,4, Y. W. Xu2, N. Zheng1,2, Q. L. Sun1, S. L. Li1,2, and J. Q. Wang1,2, 1Ministry of Agriculture-Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 2Ministry of Agriculture-Laboratory of Quality and Safety Risk Assessment for Dairy Products, Beijing, China, 3Ministry of Agriculture-Milk and Dairy Product Inspection Center, Beijing, China, 4State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 5Waters Corporation, Shanghai, China.

M109
Characterization of microdomains in bovine milk phospholipid monolayers that contain GM3 and GD3 gangliosides.
L. Real Hernandez* and R. Jimenez Flores, The Ohio State University, Columbus, OH.

M110
Effect of caprine casein in combination with arabinoxylan on the chemical stability of lutein in corn oil-in-water emulsions.
A. Mora-Gutierrez*, R. Attia, M. Gonzalez, Y. Jung, and S. Woldesenbet, Prairie View A&M University, Prairie View, TX.

M111
Lipidomics approach reveals integrated triglycerides profiles associated with different thermal treatments of dairy cow milk.
Y. Zhang1,2,3,4, N. Zheng1,2, S. Li1,4, S. Zhao1,4, F. Wen1,4, M. Li1,4, L. Meng1,2, and J. Wang1,4, 1Ministry of Agriculture-Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 2Ministry of Agriculture-Laboratory of Quality and Safety Risk Assessment for Dairy Products, Beijing, China, 3Ministry of Agriculture-Milk and Dairy Product Inspection Center, Beijing, China, 4State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.

M112
Evaluation of electrical bioimpedance spectroscopy for detection of milk adulteration—Preliminary results.
E. A. Veiga*, C. M. M. R. Martins1, R. Frizon2, and M. V. Santos1, 1Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil, 2Bionexus Tecnology, Chapecó, Brazil.

M113
Adulterants interference on Fourier-transform Infrared analysis of raw milk.
D. C. S. Z. Ribeiro1, W. L. F. T. Vicentini1, M. O. Leite1, M. M. O. P. Cerqueira1, L. F. Ferreira1, F. A. C. Feijó1, J. P. Haddad1, and L. M. Fonseca*1, 1Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil, 2CNPq, Brasília, DF, Brazil, 3FAPEMIG, Belo Horizonte, MG, Brazil.

M114
Effect of extraction conditions on the extraction efficiency for the HS-SPME-GC/MS analysis of volatile compounds in Turkish white cheese using central composite rotatable design.
P. Salum1,2, Z. Erbay1, H. Kelebek2, and S. Selli1, 1Department of Food Engineering, Institute of Natural and Applied Sciences, Cukurova University, Adana, Turkey, 2Department of Food Engineering, Faculty of Engineering and Natural Sciences, Adana Science and Technology University, Adana, Turkey.

M115
Sodium reduction and flavor enhancers addition in probiotic Prato cheese: Effect on the probiotic survival and functionality, proteolysis, antioxidant and angiotensin I-converting enzyme inhibitory activity.
H. Silva1, C. Balthazar1, J. Moraes1, E. Esmerino1, and A. Cruz2, 1Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil, 2Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil.

M116
Influence of sodium reduction and flavor enhancer addition on fatty acid profile of probiotic Prato cheese.
H. Silva1, C. Balthazar1, J. Moraes1, E. Esmerino1, and A. Cruz2, 1Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil, 2Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil.

M117
Effect of sodium reduction and flavor enhancers addition on the availability of minerals from probiotic Prato cheese during ripening and storage.
H. Silva1, C. Balthazar1, J. Moraes1, E. Esmerino1, and A. Cruz2, 1Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil, 2Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil.

M118
Micro-vesicles in milk: Identification and characterization of exosomes, ectosomes and small MFGM particles.
J. Ortega-Anaya* and R. Jiménez-Flores, The Ohio State University, Columbus, OH.
Hydrogen and methane in biogas from anaerobic digestion of manure and whey mixtures.
D. J. McMahon*, D. S. Fallon, and C. L. Hansen, Utah State University, Logan, UT.

Economic feasibility of anaerobic digestion for treating manure and whey from small-scale dairy farm combined with artisan cheese making.
S. C. Lund2, D. J. McMahon*, A. J. Young3, C. L. Hansen1, and D. V. Bailey2, 1Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT, 2Department of Applied Economics, Utah State University, Logan, UT, 3Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT.

Dairy Foods II:
Chemistry II

Rheological properties, size distribution and optical microscopy of vanilla dairy desserts added with arrowroot flour.
R. Oliveira1, M. V. Ferreira*1, J. L. Barbosa Junior1, M. I. Barbosa1, R. Bisaggio1, M. Cristina2, and A. Cruz1, 1Universidade Federal Rural of Rio de Janeiro (UFRJR), Seropédica, RJ, Brazil, 2Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil.

Supercritical carbon dioxide technology for processing of whey grape juice beverage: Assessing rheological parameters and particle size distribution.
G. Amaral1, M. V. Ferreira*1, E. Silva1, M. A. Meireles1, Esmerino1, and A. Cruz1, 1Universidade Federal Rural of Rio de Janeiro (UFRJR), Seropédica, RJ, Brazil, 2Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil, 3Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil, 4Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil.

Lactobacillus casei 01 in probiotic and symbiotic sheep milk ice cream: Viability, survival under simulated gastrointestinal conditions and Caco-2 cells adhesion.
C. Balthazar1, H. Silva*1, E. Esmerino1, M. Carmo2, L. Azevedo2, I. Camps2, and A. Cruz3, 1Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil, 2Universidade Federal de Alfenas, Alfenas, MG, Brasil, 3Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil.

Physical-chemical and functional characteristics and volatile compounds of vanilla dairy desserts: Effect of arrowroot flour addition.
R. Oliveira1, M. V. Ferreira*1, L. Cappato1, K. Nascimento1, J. Moraes2, J. L. Barbosa Junior1, M. I. Barbosa1, M. Cristina2, and A. Cruz2, 1Universidade Federal Rural of Rio de Janeiro (UFRJR), Seropédica, RJ, Brazil, 2Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil, 3Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil.

Effect of ultrasound processing on physical properties of prebiotic soursop-flavored whey beverage.
J. Guimarães*1, E. Silva2, M. A. Meireles2, E. Esmerino1, and A. Cruz2, 1Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil, 2Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil, 3Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil.

Physical stability study of a prebiotic soursop-flavored whey beverage formulation.
J. Guimarães*1, E. Silva2, M. A. Meireles2, E. Esmerino1, and A. Cruz2, 1Universidade Federal Fluminense (UFF), Seropédica, RJ, Brazil, 2Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil, 3Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil.

Impact of ultrasound processing in bioactive compounds content of a prebiotic soursop-flavored whey beverage.
J. Guimarães*1, E. Silva2, M. A. Meireles2, E. Esmerino1, and A. Cruz2, 1Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil, 2Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil, 3Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil.

Effect of ultrasound processing on microbial inactivation of prebiotic soursop-flavored whey beverage.
J. Guimarães*1, E. Silva2, M. A. Meireles2, E. Esmerino1, and A. Cruz2, 1Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil, 2Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil, 3Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil.
M129 Impact of prebiotics addition in rheological and microstructure and compositional aspects of sheep milk ice cream.
C. Balthazar¹, H. Silva*¹, E. Esmerino¹, R. Cavalcanti², and A. Cruz³, ¹Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil, ²Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil, ³Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil.

M130 Whey acerola-flavored drink processed by ohmic heating: Effect on ascorbic acid degradation and color parameters.
L. Cappato¹, M. V. Ferreira*¹, G. Mercali², L. Marczak², and A. Cruz³, ¹Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil, ²Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil, ³Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil.

M131 Whey acerola-flavored drink processed by ohmic heating: Rheological behavior, particle size distribution, and microstructure.
L. Cappato¹, M. V. Ferreira*¹, G. Mercali², L. Marczak², and A. Cruz³, ¹Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil, ²Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil, ³Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil.

M132 Effect of the ohmic heating in the bioactive compounds (antioxidant capacity and ACE inhibitory peptides) in acerola-flavored whey beverage.
L. Cappato¹, M. V. Ferreira*¹, G. Mercali², L. Marczak², and A. Cruz³, ¹Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil, ²Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil, ³Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil.

Dairy Foods III:
Microbiology

M133 Comparison of the adhesion characteristics of common dairy spore formers and their spores.
S. Jindal and S. Anand*, South Dakota State University, Brookings, SD.

M134 Evaluating enzyme formulations for biofilm removal from dairy separation membranes.
N. Garcia-Fernandez¹,² and S. Anand*¹,², ¹Midwest Dairy Foods Research Center, Brookings, SD, ²Department of Dairy and Food Science, South Dakota State University, Brookings, SD.

M135 Effect of membrane material properties on the diversity of early bacterial communities formed on ultrafiltration membranes.

M136 Investigation of *Escherichia coli* survival in powdered whole goat milk during four months of storage.
B. I. Davis, A. Siddique, A. K. Mahapatra, and Y. W. Park*, Fort Valley State University, Fort Valley, GA.

M137 Evaluation of relationship between water activity, pH and *Escherichia coli* survival of powdered whole caprine milk during 4 months of storage.
B. I. Davis*, A. Siddique, and Y. W. Park, Fort Valley State University, Fort Valley, GA.

M138 Lactose oxidase as a novel activator of the lactoperoxidase system for improved dairy product shelf-life.
S. Lara-Aguilar* and S. D. Alcaine, Cornell University, Ithaca, NY.

M139 Selective primer development for rapid detection of the gas-producing non-starter bacterium *Lactobacillus wasatchensis*.
M. Culumber¹, T. Oberg², T. Allen², F. Ortakci², C. Oberg*², and D. McMahon², ¹Weber State University, Ogden, UT, ²Utah State University, Logan, UT.

M140 Effect of bio-protective lactic acid bacteria cultures on *Lactobacillus wasatchensis*.
A. Lavigne¹, S. Smith¹, C. Oberg*², I. Bowen², and D. McMahon², ¹Weber State University, Ogden, UT, ²Utah State University, Logan, UT.

M141 The antibacterial effect of addition of citrulline in fermented milk against foodborne pathogens.
S. W. Ho* and Nagendra P. Shah, The University of Hong Kong, Hong Kong, China.
Extension Education

M146

Extension programing targeting women in the dairy industry.
R. Bluel* and T. Probert, University of Missouri, Columbia, MO.

M147

Trade-off between farm profitability and greenhouse gas emission.
D. Liang*, T. Rutherford, B. Jones, R. Shaver, and V. Cabrera, 1Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, 2Department of Applied Agricultural Economics, University of Wisconsin-Madison, Madison, WI.

M148

Development of the Dairy Focus SCC Calculator to analyze mastitis costs.
R. T. Pate*, K. T. Ryan, and F. C. Cardoso, Department of Animal Sciences, University of Illinois, Urbana, IL.

M149

Education and decision support strategy for farm-level economic and environmental assessment of dairy feed-focused best management practices.
T. J. Beck, R. C. Goodling, M. M. Haan*, V. A. Ishler, R. D. Weaver, and H. A. Weeks, 1The Pennsylvania State University, University Park, PA, 2Penn State Extension, Carlisle, PA, 3Penn State Extension, Leesport, PA, 4AgChoice Farm Credit, Mechanicsburg, PA.

M150

Feed management practices and corn silage quality effects on income over feed cost.
T. J. Beck, R. C. Goodling*, M. M. Haan, V. A. Ishler, R. D. Weaver, and H. A. Weeks, 1The Pennsylvania State University, University Park, PA, 2Penn State Extension, Carlisle, PA, 3Penn State Extension, Leesport, PA, 4AgChoice Farm Credit, Mechanicsburg, PA.

Forages and Pastures I

M151

Implementation of the LOCAL algorithm with near-infrared spectroscopy in forage resources for grazing systems of dairy cattle in Colombia.
C. Ariza-Nieto*, B. Mojica, D. Parra, O. L. Mayorga, and G. Afanador, 1CORPOICA, Bogota, Colombia, 2Universidad Nacional de Colombia, Bogota, Colombia.

M152

Characterization of forage resources of Colombian highlands grazing systems using LOCAL algorithm with near-infrared spectroscopy.
C. Ariza-Nieto*, B. Mojica, O. L. Mayorga, A. Sierra, E. Mancipe, J. Vargas, and G. Afanador, 1CORPOICA, Bogota, Colombia, 2Universidad Nacional de Colombia, Bogota, Colombia.

M153

Effects of a chemical additive on aerobic stability and fungal microbiome of corn silage.
A sensory additive increased milk response to concentrate supplementation in dairy cows grazing kikuyu pastures.
L. M. Gómez1, P. Aguirre1, F. Bargi1, G. Tedó2, and I. Ipharragueuë1,2, Solis, Medellin, Colombia, 2Lucta SA, Barcelona, Spain, 3Universidad Buenos Aires, Buenos Aires, Argentina, 4University of Kiel, Kiel, Germany.

Feed laboratory demographics and utilization in the United States.
J. Severe* and A. J. Young, Utah State University, Logan, UT.

Effects of nitrogen fertilization on the nutritive value of oat forages.
W. K. Coblenz*, M. S. Akins1, and J. S. Cavadin2, 1US Dairy Forage Research Center, Marshfield, WI, 1Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, 2University of Wisconsin Marshfield Agricultural Research Station, Marshfield, WI.

Winter supplementation of ground whole flaxseed impacts milk fatty acid composition on organic dairy farms in the northeastern United States.
A. N. Hafsa1, K. J. Soder*, A. F. Brito2, R. Kersbergen2, A. F. Benson3, H. Darby2, M. D. Rubano1, S. L. Dillard1, J. Kraft1, and S. F. Reis3, 1USDA-ARS, University Park, PA, 2University of New Hampshire, Durham, NH, 3University of Maine, Orono, ME, 4Cornell University, Cortland, NY, 5University of Vermont, Albans, VT.

Nutrient composition and management characteristics of California sorghum silage.
J. Heguy*1, J. Dahlberg2, P. Price1, J. Martins3, N. Clark2, N. Silva-del-Rio4, and D. Meyer4, 1University of California, Ag & Natural Resources, Modesto, CA, 2University of California, Ag & Natural Resources, Parlier, CA, 3University of California, Ag & Natural Resources, Tulare, CA, 4University of California, Davis, Davis, CA, 5University of California, Veterinary Medicine Teaching & Research Center, Tulare, CA.

Effect of type of processor and storage length on corn silage processing score in whole-plant corn silage samples.
L. F. Ferrareto*, J. P. Goeser3, and K. A. Bryan1, 1University of Florida, Gainesville, FL, 2Rock River Laboratory Inc., Watertown, WI, 3University of Wisconsin-Madison, Madison, WI, 4Chris Hansen, Milwaukee, WI.

Evaluation of yield and quality of photoperiod-sensitive sorghums in central Wisconsin.
E. Remick*, M. Akins1, A. Grisham2, and J. S. Cavadini3, 1Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, 2College of Animal Science and Technology, China Agricultural University, Beijing, China, 3US Dairy Forage Research Center, Marshfield, WI.

Comparison of two in situ reference methods to estimate indigestible NDF by near infrared reflectance spectroscopy.
G. J. Zhang*, 1Y. H. Yan2, M. H. Hall3, D. J. Undersander4, and D. K. Combs4, 1USDA-ARS, University Park, PA, 2University of New Hampshire, Durham, NH, 3University of Maine, Orono, ME, 4Department of Dairy Science, University of Wisconsin-Madison, Madison, WI.
M167 Packing density of corn and winter forage silage structures on California dairies.
M. Cuffia*1, J. Lawrence2, J. Heguy3, and N. Silva-del-Rio1, 1University of California, Veterinary Medicine Teaching & Research Center, Tulare, CA, 4Alltech, Fresno, CA, 2University of California, Agriculture & Natural Resources, Modesto, CA.

M168 Nitrogen fertilization effects on sorghum forage yield and quality.
A. Grisham*1, M. Akins1, E. Remick2, H. Su2, R. Ogden3, and W. Coblentz4, 1Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, 2College of Animal Science and Technology, China Agricultural University, Beijing, China, 3US Dairy Forage Research Center, Marshfield, WI.

M169 Pearl millet morphological composition at three sowing densities and two cutting heights.
J. S. Trindade1, V. L. Banys2, M. Dias3, F. J. S. Dias3, and E. A. Collao-Saenz*, 1Universidade Federal de Goiás-UFG, Jataí, Goiás, Brazil, 2UNIVAR, Barra do Garças, Mato Grosso, Brazil.

M170 Effect of plant population and hybrids varying in relative maturity on yield, nutrient composition and ruminal in vitro NDF digestibility in whole-plant corn forage.
L. F. Ferraretto*, J. G. Wasdin1, C. R. Staples1, and D. Grabow2, 1University of Florida, Gainesville, FL, 2Grabow Seed Services Inc., Atlanta, GA.

M171 Productivity of lactating dairy cows fed diets with teff hay as the sole forage.
B. Saylor*, D. Min, and B. Bradford, Kansas State University, Manhattan, KS.

Lactation Biology I

M172 Rapid and efficient method of total RNA isolation from milk fat for transcriptome analysis of mammary gland.
S. Choudhary and R. K. Choudhary*, School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab, India.

M173 Lactation-related metabolic mechanism investigated based on the relationships between 4 biofluids and mammary gland metabolomics in dairy cows.

M174 Conjugated linoleic acid (CLA) reduces milk fat content in sows without altering litter performance.
E. C. Sandri, P. C. Carraro, and D. E. Oliveira*, Santa Catarina State University, Lages, Santa Catarina, Brazil.

M175 The gene expression of fatty acid transporters and triglyceride codifying genes changes according the stage of lactation in dairy ewes.
M. Camêra1, E. Ticiani1, K. J. Harvatine2, E. C. Sandri1, and D. E. Oliveira*1, 1Santa Catarina State University, Lages, SC, Brazil, 2Penn State University, State College, PA.

M176 Milk yield differences between xanthosine treated and control glands are associated with changes in milk protein gene expression.
R. K. Choudhary1, S. Choudhary2, D. Pathak2, R. Udehiya4, R. Verma1, S. Kaswan1, A. Sharma2, M. Honparkhe2, and A. Capuco*6, 1School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India, 2Department of Veterinary Anatomy, GADVASU, Ludhiana, Punjab, India, 5Department of Livestock Production & Management, GADVASU, Ludhiana, Punjab, India, 4Department of Veterinary Surgery and Radiology, GADVASU, Ludhiana, Punjab, India, 3Department of Veterinary Gynaecology & Obstetrics, GADVASU, Ludhiana, Punjab, India, 6Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD.

M177 Peroxisome proliferator-activated receptor gamma (PPARγ) agonist and conjugated linoleic acid (CLA) have different effects on expression of milk protein genes in lactating ewes.
M. Camera2, E. C. Sandri*2, K. J. Harvatine1, and D. E. Oliveira1, 1Santa Catarina State University, Lages, Santa Catarina, Brazil, 2Penn State University, State College, PA.

M178 Strategies to ameliorate the negative impact of heat stress on immune status of cows during the dry period.
T. F. Fabris*1, J. Laporta1, D. J. McLean2, D. J. Kirk2, J. D. Chapman2, F. N. Corra1, Y. M. Torres1, and G. E. Dahl1, 1University of Florida, Gainesville, FL, 2Phibro Animal Health Corp, Teaneck, NJ.
M179 Thiazolidinedione (TZD) does not modify the milk protein synthesis in lactating ewes.
E. C. Sandri*, M. Camera, W. B. Junior, P. C. Carraro, E. D. Silva, and D. E. Oliveira, Santa Catarina State University, Lages, Santa Catarina, Brazil.

M180 Evaluating effects of mastitis and ketosis risks on reproductive parameters using indicators from an automated in-line milk analysis system.
T. C. Bruinje*1, and D. J. Ambrose1,2, 1Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, 2Livestock Research Section, Alberta Agriculture and Forestry, Edmonton, AB, Canada.

M181 Development of a model to study mammary gland function during heat stress.
Ri. O. Rodrigues*1; T. Leiva1,2, Ro. O. Rodrigues1, and T. B. McFadden1, 1University of Missouri, Columbia, MO, 2Sao Paulo State University, Botucatu, Brazil.

M182 Relationship between blood urea nitrogen near the time of AI and fertility of lactating Holstein cows.
P. D. Carvalho*, R. V. Barletta, V. G. Santos, and P. M. Fricke, Department of Dairy Science, University of Wisconsin-Madison, Madison, WI.

M183 Post-weaning calf hepatic gene expression in response to maternal feeding with methyl donors pre-partum.
C. Bespalhok Jacometo*, P. Montagner1, Z. Zhou1, F. Lopes3, D. Luchini1, M. Nunes Corrêa5, and J. Loro5, Universidad de La Salle, Bogotá, DC, Colombia, Universidade Federal de Pelotas, Pelotas, RS, Brazil, University of Illinois, Urbana, IL, Adissee SA, São Paulo, SP, Brasil, Adissee NA, Alpharetta, GA.

M184 Efficacy of an activity monitoring system to detect estrous activity in nulliparous Holstein heifers after synchronization of estrus using PGF2α.
P. D. Carvalho*, R. V. Barletta, H. Dement, and P. M. Fricke, Department of Dairy Science, University of Wisconsin-Madison, Madison, WI.

M185 Effects of feeding a rumen-protected methionine on plasma amino acid concentrations, glandular morphology, and immunolabeling in the bovine endometrium.
S. L. Stella*, D. A. V. Acosta2, C. Skenandore1,3, B. Q. Pinto1, Z. Zheng1, D. Luchini1, and F. C. Cardoso1, 1University of Illinois, Urbana, IL, 2The Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia, 3Texas A&M College of Veterinary Medicine, College Station, TX, Adissee SA, São Paulo, SP, Brasil, Adissee NA, Alpharetta, GA.

M186 Effects of Saccharomyces cerevisiae fermentation products on ovarian and uterine characteristics.
S. L. Stella*, G. L. Quesada, E. M. Pinto, and F. C. Cardoso1, 1University of Illinois, Urbana, IL, 2Diamond V, Cedar Rapids, IA.

M188 Effects of rain exposure on environmental conditions and vaginal temperature of Criollo dairy cows in Dominican Republic.
H. L. Sánchez-Rodríguez*, K. Domenech-Pérez2, R. C. Youngblood1, L. Björk-Magnúsdóttir1, P. Iglesias-Estévez2, E. Suero-Pérez2, G. Muñoz-Colón3, and C. Cabrera-Cabrera4, 1University of Puerto Rico at Mayaguez, 2Pennsylvania State University, 3Universidad de Puerto Rico en Mayagüez, 4University of Illinois, Urbana, IL, 5ISA University, Santiago, Dominican Republic, 1Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS.

M189 Effects of chronic lipopolysaccharide infusion on immune cell dynamics and the acute phase response in lactating cows.

M190 mRNA expression of 11bHSD1 and 17bHSD12 in adipose tissue of dairy cows with high and normal body condition score.
K. Schuh*1,2, S. Häuslser1, C. Koch1, D. Frieten1, G. Dusel1, H. Saad1, and H. Sauerwein1, 1University of Bonn, Institute for Animal Science Physiology & Hygiene, Bonn, North Rhine-Westphalia, Germany, 2University of Applied Sciences Bingen, Animal Nutrition and Health, Bingen am Rhein, Rhineland Palatinate, Germany, 3Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, Münchweiler a.d. Alsenz, Rhineland Palatinate, Germany.

M191 Additional small dose of prostaglandin F2α at timed AI fails to improve pregnancy per AI in lactating dairy cows.
J. A. Sauls*, B. E. Voelz, L. G. D. Mendonca, and J. S. Stevenson, Kansas State University, Manhattan, KS.
Effect of addition of L-carnitine during culture on pregnancy rate obtained after transfer of cryopreserved bovine embryos produced in vitro.
A. Zolini*, P. J. Hansen, and J. Block,
University of Florida, Gainesville, FL, OvaTech LLC, Gainesville, FL.

A resynchronization of ovulation strategy based on the ovarian structures present at non-pregnancy diagnosis reduced time to pregnancy in lactating dairy cows.
R. Wijma*, M. Masello, M. L. Stangaferro, M. M. Pérez, and J. O. Giordano,
Cornell University, Ithaca, NY.

Adipose tissue remodeling in transition dairy cows is affected by body condition score and lipolysis intensity.
G. A. Contreras*, C. S. Barboza, K. Thelen, J. de Souza, J. De Koster, and A. L. Lock,
Department of Large Animal Clinical Sciences, East Lansing, MI, Department of Animal Science, East Lansing, MI.

Coordination of adipose tissue lipolysis during the transition period in dairy cows.
S. J. Erb*, R. S. Pralle, and H. M. White,
University of Wisconsin-Madison, Madison, WI.

Expression of corticosteroidogenic metabolizing enzymes in adipose tissue of dairy cows with high and normal body condition score.
K. Schuh*, S. Häussler, C. Koch, D. Frieten, G. Dusel, H. Sadi, and H. Sauerwein,
University of Bonn, Institute for Animal Science Physiology & Hygiene, Bonn, North Rhine-Westphalia, Germany, University of Applied Sciences Bingen, Animal Nutrition and Health, Bingen am Rhein, Rhineland Palatinate, Germany, Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, Münchweiler a.d. Alsenz, Rhineland Palatinate, Germany.

Chronic lipopolysaccharide infusion reduces productivity in lactating dairy cows.
Iowa State University, Ames, IA.

Effect of adipsity on localized and systemic insulin sensitivity in periparturient Holstein dairy cows.
West Virginia University, Morgantown, WV.

Impact of milk yield genotype and stress on accumulative cortisol concentrations in hair from Holstein cows.
W. A. Smith*, G. Cousillas, A. M. Rosales Gallardo, W. J. Weber, and B. A. Crooker,
University of Minnesota, St. Paul, MN.

Effect of the intrauterine dextrose infusion at non-pregnancy diagnosis on fertility of lactating dairy cows.
S. Bas*, A. A. Barragan, J. M. Piñeiro, B. T. Menichetti, and G. M. Schuenemann,
Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH.

Slick-haired Puerto Rican Holstein cows have larger sweat glands than their wild type-haired counterparts.
University of Puerto Rico at Mayaguez Campus, Department of Animal Science, Mayaguez, Puerto Rico, Laboratorio de Investigaciones Pesqueras, Departamento de Recursos Naturales y Ambientales, Cabo Rojo, Puerto Rico, University of Puerto Rico at Mayaguez Campus, Department of Biology, Mayaguez, Puerto Rico, Institute of Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS.

Interaction of pre-calving DCAD diet and serotonin infusions on pre and post calving energy markers in multiparous Holstein cows.
A. A. Cheng*, C. J. Slater, E. L. Endres, and L. L. Hernandez,
University of Wisconsin-Madison, Madison, WI.

Some factors affecting the response of treatment with novel hormonal protocols in anestrus water buffaloes.
S. Sah and B. Devkota*, Department of Theriogenology, Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Rampur, Chitwan, Nepal.
Arteriovenous blood metabolomics: An efficient method to determine the key metabolic pathway for milk synthesis in intra-mammary gland
B. Wang*1, 2, L. S. Jiang2, L. L. Guan3, and J. X. Liu3. 1Institute of Dairy Science, College of Animal Sciences; MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, Zhejiang, China; 2Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China; 3Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.

Production, Management, and the Environment I

In vitro modification of metabolic hydrogen production and consumption with methanogenesis inhibitors.
J. Guyader*1, E. M. Ungerfeld2, and K. A. Beauchemin3. 1Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada; 2Instituto de Investigaciones Agropecuarias INIA Carillanca, Temuco, Chile.

Is phenotypic residual feed intake associated with feed efficiency, nitrogen use efficiency, urinary nitrogen and methane losses in lactating dairy cows?
F. Sun*1, M. Aguerre2. 1Department of Dairy Science, University of Wisconsin-Madison, Madison, WI; 2Department of Animal and Veterinary Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.

Perceptions of climate change by Quebec’s dairy producers.
A. L. Bellavance1, S. Fournil*1, V. Ouellet1, G. Bélanger2, G. Tremblay2, B. Korai1, and É. Charbonneau1. 1Université Laval, Quebec City, QC, Canada; 2Agriculture and Agri-Food Canada, Quebec City, QC, Canada.

Variation in carbon footprint of milk production due to management differences: A whole-farm analysis of 142 dairy farms in Ontario, Canada.
S. Jayasundara*1, T. Wright1, A. Weersink1, A. VanderZaag1, and C. W. Wagner-Riddle2. 1University of Guelph, Guelph, ON, Canada; 2Ministry of Agriculture, Food and Rural Affairs, Guelph, ON, Canada.

Effects of feeding oscillating dietary rumen-degradable protein (RDP) levels on feed intake, milk production, and nitrogen utilization in dairy cows.
A. Y. Makurumure* and T. Mutsvangwa. Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada.

Interactions between partial replacement of barley starch with sugars and dietary rumen-degradable protein level on nitrogen utilization and ruminal acidosis in dairy cows.
T. Chambwe*, G. B. Penner, and T. Mutsvangwa. Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada.

Assessing regional differences in nitrogen losses from US dairy farms using the Integrated Farm Systems Model.
K. F. Reed*1, P. A. Vadas2, C. A. Rott2, G. W. Feyereisen1, and J. D. Gamble3. 1USDA-ARS Dairy Forage Research Center, Madison, WI; 2USDA-ARS Pasture Systems and Watershed Management Research Unit, State College, PA; 3USDA-ARS Soil and Water Management Research Unit, St. Paul, MN.

Economic and environmental impacts of revised amino acid recommendations on Canadian dairy farms.
S. Binggeli*1, H. Lapierre2, E. Charbonneau1, D. Ouellet2, and D. Pellerin1. 1Université Laval, Quebec, QC, Canada; 2Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.

The effect of adding zeolites to dairy manure compost on ammonia emissions and nitrogen speciation.
M. E. de Haro Martí1, M. Chahine*2, H. Neibling3, and L. Chen2. 1University of Idaho, Gooding, ID; 2University of Idaho, Twin Falls, ID; 3University of Idaho, Kimberly, ID.

R. M. Orellana*1, T. N. Marins1, X. Weng2, A. P. A. Monteiro3, I. Guo1, J. K. Bernard1, D. J. Tomlinson2, J. M. DeFrain3, and S. Tao1. 1University of Georgia, Tifton, GA; 2Zinpro Corporation, Eden Prairie, MN.

A case study to evaluate cooling options in Georgia grazing dairies.
R. M. Orellana*1, J. K. Bernard, and S. Tao. 1University of Georgia, Tifton, GA; 2Georgia Dairy Cattlemen’s Association, Tifton, GA; 3University of Georgia, College of Agriculture and Environmental Sciences, Athens, GA.
M217 Effects of an evaporative cooling system on reducing heat stress in dairy cattle.
J. R. Johnson*, M. J. Wolf, J. McBride, and M. J. Brouk, Kansas State University, Manhattan, KS, VES Environmental Solutions, Chippewa Falls, WI.

M218 Circulating insulin resistance biomarker lignoceroyl sphingosine is not elevated in Holstein dairy cows in response to heat stress.
J. E. Rico*, Z. C. Phipps, Q. Zeng, A. M. Shall, J. D. Kaufman, A. G. Rius, and J. W. McFadden, West Virginia University, Morgantown, WV, University of Tennessee, Knoxville, TN.

M219 Seasonality of calving on dairy farms across the United States.
F. C. Ferreira*, and A. De Vries, University of Florida, Gainesville, FL, Embrapa Gado de Leite, Juiz de Fora, MG, Brazil.

M220 1H NMR-based blood metabolomics in cold-stressed dairy goats.
N. Mehaba, W. Coloma-García, A. A. K. Salama*, and G. Caja, Group of Ruminant Research (G2R), Universitat Autonoma de Barcelona, Bellaterra, Spain.

M221 Physiological and lactational responses of dairy goats to cold stress.
W. Coloma-García, N. Mehaba, A. A. K. Salama*, X. Such, and G. Caja, Group of Ruminant Research (G2R), Universitat Autonoma de Barcelona, Bellaterra, Spain.

M222 Interaction between level of production and dry period length on subsequent milking performance.
A. Bach*, and J. M. Pont, ICREA, Institució Catalana de Recerca i Estudis Avançats, Spain, Department of Ruminant Production, IRTA, Spain, Granja San José, Spain.

M223 Evaluation of the economically optimal dry period length under four herd constraints.
P. Pattamanont* and A. De Vries, University of Florida, Gainesville, FL.

M224 The association of blood calcium concentration shortly after parturition with metritis and milk production in Holstein dairy cows.

M225 Increased serum calcium in dairy cows with oral calcium formate supplementation in the postpartum period.
E. W. Carneiro, S. H. Honorato, E. E. Ichikawa, and R. Almeida*, Universidade Federal do Paraná, Curitiba, PR, Brazil, Bayer Animal Health, São Paulo, SP, Brazil.

M226 Association of milk fatty acids and β-hydroxybutyrate concentrations in postpartum dairy cows.
J. K. Poncheki, P. M. Souza, J. A. Horst, D. P. D. Lanna, and R. Almeida*, Universidade Federal do Paraná, Curitiba, PR, Brazil, Associação Paranaense de Criadores de Bovinos da Raça Holandesa, Curitiba, PR, Brazil, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, SP, Brazil.

M227 Feeding incremental levels of nicotinic acid to prepartum dairy cows increases colostral immunoglobulin concentration.
K. Aragona*, E. Rice, M. Engstrom, and P. Erickson, University of New Hampshire, Durham, NH, DSM Nutritional Products Inc.

M228 Effects of supplemental β-carotene to prepartum dairy cows on colostrum quality and the pre-weaned calf.
K. Aragona*, E. Rice, M. Engstrom, and P. Erickson, University of New Hampshire, Durham, NH, DSM Nutritional Products Inc.

M229 Feeding green tea extracts has minor effects on antioxidant status of dairy cows during the transition period.
Ruminant Nutrition I

M230 Ratio of dietary forage-to-concentrate affect liver and mammary tissue transcriptome in primiparous Holstein dairy cows. Z. Zhou1,2, L. Ma1,2, J. Q. Wang1, J. J. Loor1, M. Bionaz1, and D. P. Bu*1,3, 1State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 2Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 3Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 4CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing, China, 5Hunan Co-Innovation Center of Safety Animal Production, CICSAP, Changsha, Hunan, China.

M231 Maternal ethyl-cellulose rumen-protected methionine supplementation affects Holstein heifer calf development and growth. A. S. Alarthi1,2, F. Batistel1, C. Parys1, A. Helmbrrecht1, and J. J. Loor1, 1University of Illinois at Urbana-Champaign, Urbana, IL, 2Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Germany.

M232 Effect of pasteurized and non-pasteurized colostrum on the growth performance and development of gastrointestinal tract of calves. G. T. Liu1,2, D. P. Bu1,2, S. C. Li1, K. Yang1, and Q. E. Zhang*1, 1State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 2Department of Animal Science, Ningxia University, Yinchuan, Ningxia, China, 3Department of Animal Science, University of Manitoba, Winnipeg, Canada, 4Dongying Austasia Modern Dairy Farm Co., Ltd, Dongying, Shandong, China, 5Hunan Co-Innovation Center of Safety Animal Production, CICSAP, Changsha, Hunan, China.

M233 Modulation of feeding behavior in lactating dairy cows by sweet sensory additives. M. Blanch*1, F. Bargo1, G. Tedó1, I. R. Ipharraguerre1,2, I. Guasch1, and A. Bach1, 1Lucta S.A, Barcelona, Spain, 2University of Kiel, Germany, 3Blanca from the Pyrenees, Spain, 4ICREA, Barcelona, Spain, 5IRTA, Caldes de Montbui, Spain.

M234 Metabolic changes in rumen fluid from dairy cows in response to heat stress. L. Ma1,2, Y. X. Yang1, S. T. Gao1,2, L. Baumgard1,2, Z. T. Yu1, and D. P. Bu*1,2, 1State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 2CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing, China, 3Iowa State University, Ames, IA, 4Department of Animal Sciences, The Ohio State University, Columbus, OH, 5Hunan Co-Innovation Center of Safety Animal Production, CICSAP, Changsha, Hunan, China.

M235 Impact of ad libitum milk feeding and butyrate supplementation on organ and epithelial growth in the gastrointestinal tract of dairy calves. C. Gerbert1, D. Frieten*2, C. Koch1, G. Dusel1, K. Eder3, R. Zitnan4, and H. M. Hammon5, 1Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany, 2Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany, 3Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany, 4National Agricultural and Food Centre, Research Institute for Animal Production, Nitra, Slovakia, 5Institute of Nutritional Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.

M236 The effect of fermented ammoniated condensed whey supplementation on hyperketonemia incidence in transition dairy cows. R. C. Oliveira*1, K. J. Sailer1, R. S. Pralle1, H. T. Holdorf1, G. D. Poppy2, and H. M. White1, 1University of Wisconsin-Madison, Madison, WI, 2Fermented Nutrition Corporation, Luxemburg, WI.

M237 Preparartum conjugated linoleic acid supplementation on lactation performance and metabolic health in dairy cows. R. C. Oliveira*1, R. S. Pralle1, L. C. de Resende2, C. H. P. C. Nova2, V. Caprarulo1, J. A. Jendza1, A. Troescher6, and H. M. White1, 1University of Wisconsin-Madison, Madison, WI, 2Federal University of Lavras, Lavras, Brazil, 3State University of Northern Rio de Janeiro, RJ, Brazil, 4University of Milan, Milan, Italy, 5BASF, Florham, NJ, 6BASF, Lampertheim, Germany.

M238 Effect of live yeast and a combination of live yeast and calcified seaweed on rumen fermentation. N. D. Walker*1, O. AlZahal1, B. Tas1, and W. van Straalen1, 1AB Vista, Marlborough, Wiltshire, UK, 2Schoothorst Feed Research, Lelystad, the Netherlands.

M239 Factors affecting performance responses to supplementation of rumen-protected methionine for dairy cows. G. F. M. Leão1, J. R. R. Dórea1, and M. A. C. Danes*1, 1University of Lavras, Lavras, MG, Brazil, 2Federal University of Paraná, Curitiba, PR, Brazil, 3University of Wisconsin, Madison, WI.

M240 The use of H-nuclear magnetic resonance (H-NMR) in ewes suffering milk fat depression: Could blood metabolomic differences explain the individual variations? A. A. K. Salama*1, P. G. Toral1, G. Hervás2, G. Caja1, and P. Frutos3, 1Group of Ruminant Research (G2R), Universitat Autonoma de Barcelona, Bellaterra, Spain, 2Instituto de Ganadería de Montaña (CSIC-ULE), Grulleros, León, Spain.
M241 Nitrogen utilization in dairy cows fed a corn silage based-diet supplemented with increasing amounts of linseed oil.
F. Hassanat*, C. Cherif, D. Warner, and C. Benchaar, Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada.

M242 Effect of Lactobacillus animalis LA-51 and Propionibacterium freudenreichii PF-24 on the total tract digestibility of protein, starch, NDF and on fecal starch concentrations in high-producing cows.
K. E. Nestor Jr.*, S. Lerner, and C. Jamison, Chr. Hansen Animal Health, Milwaukee, WI.

M243 Gaseous emissions from forages and rumen-cannulated steers: Do ruminants emit nitrous oxide?
K. Gerlach*1, A. Sommer1, A. J. Schmithausen2, M. Trimborn1, W. Büscher1, and K.-H. Südekum1, 1Institute of Animal Science, University of Bonn, Bonn, Germany, 2Institute of Agricultural Engineering, University of Bonn, Bonn, Germany.

M244 In vitro post-ruminal digestion of rumen bypass emulsions encapsulated by interfacial crosslinking using polyphenol oxidase from potato tuber peels.
F. Gadeyne*1, N. De Neve1, B. Vlaeminck1, P. Van der Meer1, and V. Fievet1, 1Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium, 2Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium.

M245 The effect of concentrate supplementation strategy on milk production and rumen fermentation parameters in late-lactation spring-calving grazing dairy cows.

M246 Reduction of aflatoxin transfer into milk of lactating dairy cows with the addition of a commercial clay.
S. C. Allen*1, Z. A. Mason1, B. J. Rude1, R. H. Bailey1, A. Hoang1, D. L. Sparks1, A. B. Johnson1, and S. H. Ward1, 1Mississippi State University, Mississippi State, MS, 2North Carolina State University, Raleigh, NC.

M247 Revised representation of urea recycling and ruminal nitrogen metabolism for the Molly cow model.
M. Li*1, R. R. White2, and M. D. Hanigan2, 1Department of Dairy Science, Virginia Tech, Blacksburg, VA, 2Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA.

M248 Value of pulp from green protein extraction of grass clover as forage for dairy cows.
V. K. Damborg*, S. K. Jensen, and M. R. Weisbjerg, Department of Animal Science, Aarhus University, Aarhus, Foulum, Denmark.

M249 Rumen degradability and intestinal digestibility of dry matter and crude protein of wheat and corn dry distillers grains with or without solubles.
K. Nedelkov*1, N. Todorov1, M. T. Harper2, D. Girginov1, and M. Simeonov1, 1Trakia University, Stara Zagora, Bulgaria, 2The Pennsylvania State University, University Park, PA, 3Agricultural Institute, Stara Zagora, Bulgaria.

M250 Effects of combinations of prilled fatty acids with or without potassium carbonate on fermentation and biohydrogenation intermediates in continuous culture fermenters.
L. E. Koch*1, B. M. Koch1, S. M. Hussein1, V. R. Trutwin1, T. C. Jenkins1, C. Soderholm2, J. Linn2, J. Albrecht2, and G. J. Lascano1, 1Clemson University, Clemson, SC, 2Milk Specialties Global, Eden Prairie, MN.

M251 Undigested NDF (uNDF240h) excretion in feces of lactating cows: A comparison of multiple time-points, diurnal and 24-hour composite collections.
E. Bonfante*, D. Cavallini, A. Palmonari, M. Fustini, L. Mammì, G. Canestrari, and A. Formigoni, DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Ozzano dell’Emilia, BO, Italy.

M252 miRNA regulation of the neutrophil transcriptome in response to prepartal energy intake in Holstein cows: an in silico approach.
M. Vailati Riboni*1, V. Palombo1, A. Agrawal1, M. J. Khan1, and J. J. Loor1, 1Urbana, IL 61801, Urbana, IL, 2Università degli Studi del Molise, Campobasso, Italy.

M253 Effects of a rumen-protected lysine product as a source of metabolizable lysine for high-producing dairy compared with porcine blood meal.
S. Polukis*1, A. Barnard1, T. Gressley1, N. Lobos1, K. Griswold2, and L. Kung Jr.1, 1University of Delaware, Newark, DE, 2Kemin Industries, Inc., Des Moines, IA.
M254 In silico prediction of miRNA activity in the hepatic response to prepartum body condition score and plane of nutrition during the transition period in grazing dairy cows.
M. Vailati Riboni1, V. Palombo1, M. D. Mitchell1, M. A. Crookenden1, A. Heiser1, S. L. Rodriguez-Zas1, J. R. Roche2, and J. J. Loo1,1
1University of Illinois at Urbana-Champaign, Urbana, IL, 2Università degli Studi del Molise, Campobasso, Italy, 3University of Queensland, Herston, Queensland, Australia, 4DairyNZ Limited, Hamilton, New Zealand, 5AgResearch, Palmerston North, New Zealand.

M255 Pre-weaning and post-weaning performance in dairy calves fed an active dry yeast (Saccharomyces cerevisiae CNCM I-1077).
A. Faulkner2, A. Clay3, L. Waldron2, A. Aguilar*, E. Chevaux4, and A. Turney5, 1Lallemand Animal Nutrition, Milwaukee, WI, 2Vitek/Lallemand, Auckland, NZ, 3Nutritech/Lallemand, Auckland, NZ.

M256 Evaluation of sample preparation methods for the determination of fecal pH in dairy cows.

M257 Bioavailability of Ajipro-L 2G and Ajipro-L 3G using the plasma free lysine dose-response technique.
N. Whitehouse*, A. Brito, C. Schwab5, I. Shinato4, and M. Miura1, 1University of New Hampshire, Durham, NH, 2Schwab Consulting LLC, Boscobel, WI, 3Ajinomoto Heartland Inc., Chicago, IL, 4Ajinomoto Co. Inc., Tokyo, Japan.

M258 In vitro investigation of supplementing microalgal protein precipitate material as a source of dietary protein in a dairy diet using continuous cultures.
S. Y. Yang1, J. M. Yang1, J. Marriott2, J.-S. Eun*, R. C. Sims2, and R. C. Anderson3, 1Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 2Department of Biological Engineering, Utah State University, Logan, UT, 3USDA-ARS, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX.

M259 Is a pelleted feed required in an automated milking system (AMS)?
K. S. Paddick*, S. B. Menajovsky, and G. B. Penner, University of Saskatchewan, Saskatoon, SK, Canada.

M260 Lipidomics reveals phosphatidylcholines as candidate biomarkers for metabolic disease.
S. S. Samii*, Y. Zang1, E. Grilli2, and J. W. McFadden1, 1West Virginia University, Morgantown, WV, 2University of Bologna, Bologna, Italy.

M261 Performance of crossbred Holstein × Zebu cows supplemented with fibrolytic enzyme in diets with different forage levels.
A. M. Teixeira1, L. C. Gonçalves2, L. F. Martins1, A. P. D’Abadia Netto1, B. O. Silva1, G. C. Oliveira1, T. T. Santos1, N. Ferreira Junior*, N. D. Walker4, and T. L. Resende5, 1Universidad Federal de Minas Gerais, Belo Horizonte, MG Brazil, 2Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil, 3AB Vista Brazil, São Paulo, SP Brazil, 4AB Vista, Marlborough, Wiltshire, UK, 5Auster Nutrição Animal Ltda, Hortolândia, SP Brazil.

M262 Kinetics of trans-10,cis-12 and cis-9,trans-11 conjugated linoleic acid (CLA) transfer to plasma and milk following an abomasal bolus in lactating dairy cows.
N. L. Urrutia1, R. Bomberger1, M. Baldin1, M. Toledo1, and K. J. Harvatine*, 1The Pennsylvania State University, University Park, PA, 2Instituto Nacional de Investigaciones Agropecuarias-Remehue, Osorno, X Region de Los Lagos, Chile.

M263 Palmitic acid feeding increases plasma ceramide concentrations in Holstein dairy cows during early lactation.
A. N. Davis2, Z. C. Phipps*, Q. Zeng1, J. de Souza2, J. E. Rico1, A. L. Lock2, and J. W. McFadden1, 1West Virginia University, Morgantown, WV, 2Michigan State University, East Lansing, MI.

M264 Effect of rumen fluid inoculum and substrate on in vitro volatile fatty acid production and fiber digestibility.
R. A. Kohn*, L. M. Judd1, C. Stoffel*, and E. Evans3, 1University of Maryland, College Park, MD, 2Papillon Agricultural Company, Easton, MD, 3Essi Evans Technical Advisory Services, Bowmanville, Canada.

M265 Effect of feeding two fat sources varying in palmitic and stearic acid content in mid-lactation dairy cows.
P. Piantoni*, Y. Sun, A. A. A. Jacobs, and G. F. Schroeder, Cargill Animal Nutrition Innovation Center, Elk River, MN.

M266 Estimation of dry matter intake of individual cows fed in a group setting using common on-farm measurements.
M. E. Iwaniuk*, E. E. Connor3, and R. A. Erdman1, 1University of Maryland, College Park, MD, 2USDA-ARS, Beltsville, MD.

M267 Effects of a starch binding agent on in vitro rumen degradability of corn and sorghum starch.
M. N. T. Shipandeni1,2, E. Raffrenato1, and C. W. Cruywagen1, 1Department of Animal Sciences, Stellenbosch University, Stellenbosch, South Africa, 2Department of Animal Science, University of Namibia, Windhoek, Namibia.
M268 Effects of oilseed supplementation on performance, methane emission and nitrogen utilization efficiency of lactating dairy cows.
C. Muñoz*,1, R. C. Sánchez2, A. M. T. Peralta3, S. Espíndola4, T. Yan5, R. Morales6, and E. M. Ungerfeld3, 1Instituto de Investigaciones Agropecuarias, INIA Remehue, Osorno, Chile, 2Facultad de Ciencias Veterinarias, Universidad de Concepción, Concepción, Chile, 3Cooperativa Agrícola y Lechera de La Unión, La Unión, Chile, 4Agri-Food and Biosciences Institute (AFBI), Agriculture Branch, Hillsborough, UK, 5Instituto de Investigaciones Agropecuarias, INIA Carillanca, Temuco, Chile.

M269 Effect of different physiological stages on plasma adropin, insulin, nonesterified fatty acids, and glucose concentration in lactating dairy cows.
H. M. Edvardsson* and A. E. Relling, Department of Animal Sciences, The Ohio State University, Wooster, OH.

M270 Effect of different heat processing methods on both morphological changes of starch granules and degradability of barley grain.
S. Shirmohammadi*, A. Taghizadeh, G. A. Moghaddam, and A. H. Khani, University of Tabriz, Tabriz, East Azerbaijan, Iran.

M271 Effect of parity on grazing behavior of dairy cows grazing oat pastures.

M272 Changes in rumen bacteria communities in continuous cultures fed high and low levels of unsaturated fatty acids with increasing rates of starch degradability.
V. Richards, T. Jenkins, L. Koch, and G. Lascano*, Clemson University, Clemson, SC.

M273 In vitro fermentation of Moringa oleifera leaves supplemented in a ruminant diet.
S. Chizonda*, J. Allen, and V. Fellner, North Carolina State University, Raleigh, NC.

M274 Impact of feed restriction-induced negative energy balance on the fatty acid profile of liver lipid fractions of dairy cows.

M275 Effect of feeding different levels of total undigested NDF and forage on production responses of lactating dairy cows.

M276 Curve-linear relationship between altered carbohydrate traits and rumen and intestinal digestion in dairy cattle in hull-less barley varieties (Hordeum vulgare L.).
B. Sun1,2, M. Sun1,3, and P. Yu*3, 1University of Saskatchewan, Sask, Canada, 2Southchina Agricultural University, Guangzhou, China, 3Northeast Agricultural University, Harbin, China.

M277 Interactions between levels of flaxseed oil and corn grain particle size on milk yield and nutrient digestibility in Jersey cows.
V. Brossillon1, A. F. Brito*,3, S. F. Reis2, D. C. Moura3, J. G. B. Galvão Jr.4, C. Côrtes5, and A. S. Oliveira6, 1Ecole Supérieure d’Agricultures, Angers, France, 2University of New Hampshire; Department of Biological Sciences, Durham, NH, 3Programa de Pós Graduação em Ciência Animal, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil, 4Instituto Federal de Educação do Rio Grande do Norte, Ipanguaçu, RN, Brazil, 5Instituto de Ciências Agrárias e Ambientais, Universidade Federal de Mato Grosso – Campus Sinop, Sinop, MT, Brazil.

M278 Fatty acid challenge increases oxidation and glucose production in a substrate-specific manner in bovine primary hepatocytes.
T. L. Chandler*, S. J. Erb, K. J. Sailer, S. J. Bertics, and H. M. White, University of Wisconsin-Madison, Madison, WI.

M279 Nutritive value of common feedstuffs fed to dairy cows measured using the in vitro gas production technique.
K. Mjoun*, L. Shearer, and B. Kubat, Altech, Brookings, SD.

C. M. M. R. Martins*,1, D. C. M. Fonseca1, M. A. Arcari1, B. G. Alves1, K. C. Welter2, F. P. Rennó3, and M. V. Santos2, 1Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil, 2Department of Animal Sciecen, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.

M281 Impact of dietary starch concentration formulated with two types of corn silage on methane and ammonia emissions in dairy cows.
J. I. Sanchez-Duarte*, K. F. Kalscheur2, and J. M. Powell3, 1South Dakota State University, Brookings, SD, 2US Dairy Forage Research Center, USDA, ARS, Madison, WI.
M282 Forage fiber quality interacts with dietary protein level to determine nitrogen use efficiency.
C. S. Malherbe* and E. Raffrenato, Department of Animal Sciences, Stellenbosch University, Stellenbosch, South Africa.

M283 Predicting rumen passage rate of NDF fractions in lactating dairy cows.
J. R. R. Dórea*1, T. M. Brown-Brandl2, S. C. Fernando1, 1University of Wisconsin, Madison, WI, 2Federal University of Lavras, Lavras, MG, Brazil.

M284 Effect of contrasting predicted residual feed intake on performance and CH4 emission of dairy cows fed 2 levels of forage neutral detergent fiber.
M. Aguerre*, F. Sun1, J. M. Powell3, K. Weigel1, A. Pelletier1, P. Crump1, and M. Wattiaux1, 1Animal and Veterinary Science Department, Clemson University, Clemson, SC, 2Dairy Science Department, University of Wisconsin-Madison, Madison, WI, 3U.S. Dairy Forage Research Center, Madison, WI, 4Soils Science Department, University of Wisconsin-Madison, Madison, WI, 5Department of Computing and Biometry, University of Wisconsin-Madison-Madison, Madison, WI.

M285 Effects of supplementing active dry yeast, a blend of probiotic bacteria, or a combination of both on rumen fermentation profiles and nutrient digestion in continuous rumen fermentors.
Y. Liang*, E. Davis, and M. A. Ballou, Texas Tech University, Department of Animal and Food Sciences, Lubbock, TX.

M286 Performance of dairy cows fed conventional sorghum or corn silages compared to brown midrib sorghum silage: A meta-analysis.
J. I. Sanchez-Duarte*, K. F. Kalscheur2, A. D. Garcia1, and F. E. Contreras-Govea1, 1South Dakota State University, Brookings, SD, 2US Dairy Forage Research Center, USDA, ARS, Madison, WI, 3University of Wisconsin, Madison, WI.

M287 Effects of experimental design and protein substitution strategy on production responses to feeding different levels of protein to primiparous dairy cows.
G. I. Zanton*, USDA-Agricultural Research Service; Dairy Forage Research Center, Madison, WI.

M288 Direct and indirect causal effects of dietary starch on fiber digestibility.
J. R. R. Dórea*, G. J. M. Rosa, and D. K. Combs, University of Wisconsin, Madison, WI.

M289 Physical characterization of fat supplements highly enriched in palmitic and stearic acid.
R. P. Shepardson*, E. Bazileyskaya, and K. J. Harvatine, Penn State University, University Park, PA.

M290 Circulating blood metabolites in early lactation dairy cows fed canola or soybean meals.
S. A. E. Moore*, and K. F. Kalscheur2, 1University of Wisconsin, Madison, WI, 2US Dairy Forage Research Center, USDA-ARS, Madison, WI.

M291 Effect of supplementing rumen-protected methionine pre- and postpartum on milk yield and components of dairy cows during early lactation.
M. L. Stangaferro*, M. M. Perez1, M. Masello1, R. Wijma1, M. E. Van Amburgh1, T. R. Overton1, D. Luchini3, M. C. Wiltbank2, R. D. Shaver1, and J. O. Giordano1, 1Cornell University, Ithaca, NY, 2University of Wisconsin-Madison, Madison, WI, 3Adisseo USA Inc., Alpharetta, GA.

M292 Methane mitigation with corn oil and calcium sulfate, responses on whole animal energy and nitrogen balance in dairy cattle consuming reduced-fat distillers grains plus solubles.
J. V. Judy*, T. M. Brown-Brandl2, S. C. Fernando1, and P. J. Kononoff1, 1University of Nebraska-Lincoln, Lincoln, NE, 2USDA, ARS, US Meat Animal Research Center, Clay Center, NE.

M293 Calves fed with oregano and green tea extracts alter slightly their blood redox status.
V. Fischer*, M. de Paris1, S. C. B. Stivanin1, E. F. Vizzotto1, M. B. Zanella1, C. Klein1, V. Stone1, and C. Mattei1, 1Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, 2Empresa Brasileira de Pesquisa Agropecuaria, Pelotas, RS, Brazil.

M294 Effects of a pulse dose of propionate on metabolic response in lactating dairy cows during the postpartum period.
K. M. Kennedy* and M. S. Allen, Michigan State University, East Lansing, MI.

M295 Milk and methane production in lactating dairy cattle consuming distillers dried grains and solubles or canola meal.
M. A. Myers*, T. M. Brown-Brandl2, J. V. Judy1, K. J. Herrick1, and P. J. Kononoff1, 1Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, 2USDA, ARS, US Meat Animal Research Center, Clay Center, NE, 3Poet Nutrition LLC, Sioux Falls, SD.

M296 Increasing the diet concentrations of fat and hemicellulose on energy utilization and methane production in lactating Jersey cattle.
O. R. Drehnel*, T. M. Brown-Brandl2, J. V. Judy1, S. C. Fernando1, and P. J. Kononoff1, 1Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, 2USDA, ARS, US Meat Animal Research Center, Clay Center, NE.
M297 Increasing the concentration of linolenic acid in diets fed to Jersey cows in late lactation does not affect methane production.
J. V. Judy*, T. M. Brown-Brandt, S. C. Fernando, and P. J. Kononoff, University of Nebraska-Lincoln, Lincoln, NE, USDA, ARS, US Meat Animal Research Center, Clay Center, NE.

M298 The effects of feeding a high- or low-plane of milk pre-weaning on IGF-1 and IGFBP in dairy heifers.
J. Haisan*, M. Obá, D. J. Ambrose, and M. A. Steele, University of Alberta, Edmonton, AB, Canada, Livestock Research Section, Agriculture and Forestry, Edmonton, AB, Canada.

M299 Interactions between levels of flaxseed oil and corn grain particle size on milk fatty acid profile in Jersey cows.
V. Brossillon, A. F. Brito, S. F. Reis, D. C. Moura, J. G. B. Galvão Jr., C. Cortes, and A. S. Oliveira, Ecole Supérieure d’Agrosciences, Angers, France, University of New Hampshire, Department of Biological Sciences, Durham, NH, Programa de Pós Graduação em Ciência Animal, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil, Instituto de Ciências Agrárias e Ambientais, Universidade Federal de Mato Grosso – Campus Sinop, Sinop, MT, Brazil.

M300 Replacing conventional or brown midrib corn silage with brown midrib sudangrass silage in the diets of lactating dairy cows.
K. F. Kalscheur* and G. E. Brink, U.S. Dairy Forage Research Center, USDA-ARS, Madison, WI.

M301 The role of fat in distillers grains and solubles on the rumen bacterial community.
E. Castillo-Lopez*, C. Jenkins, N. Aluthge, T. Wesley, S. Fernando, and P. Kononoff, Universidad Nacional Autonoma de Mexico-FESC, Cuautitlan, Estado de Mexico, Mexico, Universidad de Nebraska-Lincoln, Lincoln, NE.

M302 Effects of selected feed additives to improve growth and health of dairy calves.

M303 The effects of varying undigested NDF and physically effective NDF content of fresh cow rations on metabolism in multiparous Holstein cows.

M304 Pre- and post weaning performance and health of dairy calves fed complete pelleted calf starters formulated for three different starch levels.

M305 Total fatty acid and rumen unsaturated fatty acid load variation in commercial TMR, forages, and corn grain.

M306 Feeding rumen-protected methionine pre- and postpartum increases milk protein content and yield in early-lactation.

M307 Effects of temporal supply of propionic acid on feeding behavior of cows in the postpartum period.
G. Maldini*, M. S. Allen, Michigan State University, East Lansing, MI, CAPES, Brasilia, DF, Brazil.

M308 Comparing choline bioavailability of two rumen-protected choline products using milk betaine as a biomarker in the lactating dairy cow.
M. J. de Veth*, M. Cooney, and P. French, BioNarus LLC, Cary, NC, phdR&D, Fort Atkinson, WI, Feed Components LLC, East Troy, WI.

M309 Effects of supplementation with a combination of palmitic and stearic acids on dry matter intake, milk yield, and component production: a meta-analysis.
M. D. Sellers*, T. L. Harris, and J. R. Loften, Milk Specialties Global Animal Nutrition, Eden Prairie, MN.

M310 Withdrawn

M311 Effects of supplementation with calcium salts of palm fatty acid distillate on dry matter intake, milk yield, and component production: A meta-analysis.
T. L. Harris*, M. D. Sellers, and J. R. Loften, Milk Specialties Global Animal Nutrition, Eden Prairie, MN.
Replacing ground corn with liquid molasses decreases production performance in dairy cows offered low-starch diets.

M. D. Sellers, T. L. Harris, and J. R. Loften*, Milk Specialties Global Animal Nutrition, Eden Prairie, MN.

Effects of supplementation with palmitic acid-enriched fat products on dry matter intake, milk yield, and component production: A meta-analysis.

M. D. Sellers, T. L. Harris, and J. R. Loften*, Milk Specialties Global Animal Nutrition, Eden Prairie, MN.

Effect of crude glycerin combined with virginiamycin on rumen metabolism of Nellore bulls fed with finishing diets.

Comparative analysis of bacterial community composition from the different ruminal ecological niche of Alxa Bactrian camel.

J. Zhao*1,2, Z. Yu2, and H. Wu1, 1Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China, 2The Ohio State University, Columbus, OH.

Screening of chemically and physically treated corn stover and soybean meal pellet formulations for in situ digestibility in dairy cows.

B. C. Dooley**, C. S. Shouse1, M. A. Torres-Crespo1, R. Zeeck1, and H. A. Ramirez-Ramirez2, 1Iowa State University, Ames, IA, 2Pellet Technology USA, Gretna, NE.

The development of methodology for ruminal and colon tissue biopsying of Holstein dairy bull calves during weaning.

J. K. van Niekerk*, M. Middeldorp, Z. He, and M. A. Steele, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.

Functional oils or monensin on milk production and feed efficiency of Holstein cows during the summer.

M. Rennó*, D. C. Moura, A. S. Oliveira, and R. A. V. Santana, 1University of New Hampshire, Department of Biological Sciences, Durham, NH, 2Universidade Federal de Mato Grosso, Programa de Pós Graduação em Ciência Animal, Cuiabá, MT, Brazil, 3Universidade Federal de Mato Grosso–Campus Sinop, Instituto de Ciências Agrárias e Ambientais, Sinop, MT, Brazil, 4Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais–Campus Arinos, Arinos, MG, Brazil.

Pre-ensiling addition of bacterial inoculant, amylase or both to rehydrated cracked corn.

L. C. Solórzano*, L. L. Solórzano, and A. A. Rodríguez, 1University of Puerto Rico, Mayagüez, PR, 2Independent Researcher, Fitchburg, WI.

Relation between mineral composition of milk and lactation performance.

A. R. Alfonso-Avila**, E. Charbonneau1, P. Y. Chouinard1, G. F. Tremblay2, D. E. Rico3, and R. Gervais1, 1Université Laval, Quebec, QC, Canada, 2Agriculture and Agri-Food Canada, Quebec, QC, Canada.

Effects of pre-ensiling additions of a bacterial inoculant with or without molasses on rehydrated cracked corn fermentation parameters.

L. C. Solórzano*, L. L. Solórzano, and A. A. Rodríguez, 1University of Puerto Rico, Mayagüez, PR, 2Independent Researcher, Fitchburg, WI.

Supplementation of blackberry pomace during the transition phase may improve health and reproductive performance of dairy cows.

K. Swanson*, S. Akers, K. Estenson, R. Wilson, M. Keller, and G. Bobe, Oregon State University, Corvallis, OR.
Small Ruminant I

M325
Evaluation of *Saccharomyces cerevisiae* fermentation products on production, metabolism, oxidative stress, and health of transition dairy cows.
K. M. Glosson*, I. Yoor, and J. K. Drackley, ¹University of Illinois, Department of Animal Science, Urbana, IL, ²Diamond V, Cedar Rapids, IA.

M326
Does sunlight exposure result in more concentrate intake in growing Afshari lambs during the hottest hours of day?
M. Gilhossein, E. Mahjoubi*, D. Zahmatkesh, and M. H. Yazdi, University of Zanjan, Zanjan, Zanjan, Iran.

M327
Monte Carlo risk assessment of dry matter intake equations in Saanen goats.
A. K. Almeida*¹, L. O. Tedeschi², K. T. Resende², B. Biagioli³, and I. A. M. A. Teixeira³, School of Agricultural and Veterinary Science, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil, ²Texas A&M University, College Station, TX.

M328
A 2% coconut oil supplementation does not improve milk yield of crossbred dairy goats under tropical environment.
S. Thammacharoen*, T. Nguyen¹, T. K. Ho¹, S. Chanpongsang¹, and N. Chaiyabutr¹, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, ¹Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.

M329
Effect of dietary potassium carbonate on milk fat concentration and yield in early-lactating dairy goats fed a high-concentrate diet.
S. Dion*, M. E. Brassard¹, J. Levesque², R. Gervais³, and P. Y. Chouinard¹, Université Laval, Québec, QC, Canada, ²Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada.

M330
Influence of supplemental choline on milk yield, fatty acid profile, and postpartum weight changes in suckling ewes.
M. M. Crosby¹, G. D. Mendoza-Martinez², A. Relling*, A. Vazquez-Valladolid³, H. A. Lee-Rangel⁴, J. A. Martinez², and M. Oviedo⁵, ¹Colegio de Postgraduados, Montecillo, Texcoco, Mexico, ²Universidad Autonoma Metropolitana, Ciudad de Mexico, Mexico, ³Ohio State University, Wooster, OH, ⁵Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico.

M331
Sexual responses of bucks in different body condition at the end of anoestrus period.
E. D. Valle*, A. G. López¹, M. G. Machado¹, L. I. Velez², M. Mellado¹, F. G. Veliz¹, and M. A. De Santiago³, ¹Postgrado de Producción Agropecuaria, Universidad Autónoma Agraria Antonio Narro, Torreón, Coahuila, México, ³Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Matamoros, Coahuila, México.

M332
Improving goat sperm post-thaw quality using GameteGuard extender.
M. Shepherd*, C. Bennett, B. Baker, and L. Herickhoff, Membrane Protective Technologies Incorporated, Fort Collins, CO.

Teaching/Undergraduate and Graduate Education

M333
Virginia Tech STEM Scholars program: Freshman academic performance influences subsequent academic success.
R. R. Cockrum*, K. F. Knowlton, and M. D. Denbow, Virginia Polytechnic Institute and State University, Blacksburg, VA.
SYMPOSIA AND ORAL SESSIONS

ADSA Dairy Foods Graduate Student Oral Competition
Chair: Randy Brandsma, Schreiber Foods Inc.
Room 331

9:30 AM 18 Use of high hydrostatic pressure to modulate milk protein interactions: A new method for α-lactalbumin fractionation?
A. Marciniak*, Y. Pouliot*, and A. Doyen*, 1Université Laval, Québec, Québec, Canada, 2INAF/STELA Dairy Research Center, Québec, Québec, Canada.

9:45 AM 19 Measurement of casein as a percentage of true protein in milk by Kjeldahl and SDS-PAGE.
L. Di Marzo* and D. M. Barbano, Department of Food Science, Northeast Dairy Food Research Center, Cornell University, Ithaca, NY.

10:00 AM 20 Identification of iron loci by scanning electron microscopy and iron recovery rate in iron fortified caprine milk Cheddar cheese.
A. Siddique*, B. I. Davis, B. N. Vaidya, and Y. W. Park, Fort Valley State University, Fort Valley, GA.

10:15 AM Break

10:30 AM 21 Effect of sugars and protein sources on expression of genes involved in exopolysaccharide production by Streptococcus thermophilus ASCC1275.
A. Padmanabhan*, Q. Wu, and N. P. Shah, The University of Hong Kong, Hong Kong, China.

10:45 AM 22 In vivo digestion of a model infant formula in piglets: Protein digestion pattern and physiological responses.
N. R Tari*, M. Z. Fan*, and M. Corredig*, 1Department of Food Science, University of Guelph, Guelph, ON, Canada, 2Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, 3Gay Lea Foods Research and Development, Guelph, ON, Canada.

11:00 AM 23 Extending the shelf-life of low moisture part-skim mozzarella.
L. A. Jiménez-Maroto*, S. Govindasamy-Lucey, J. J. Jaeggi, M. E. Johnson, and J. A. Lucey, 1University of Wisconsin-Madison, Madison, WI, 2Wisconsin Center for Dairy Research, Madison, WI.

ADSA Graduate Student (MS) Production Oral Competition
Chair: Heather Dann, Miner Institute
Room 309

9:30 AM 24 Qualitative analysis of nine forage mixtures designed for southeastern US organic dairy production.

9:45 AM 25 Productivity of lactating dairy cows fed diets with teff hay as the sole forage.
B. Saylor*, D. Min, and B. Bradford, Kansas State University, Manhattan, KS.

10:00 AM 26 Transient effects of supplemental potassium and magnesium in lactating dairy cattle.
A. W. Tedbe* and W. P. Weiss, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH.

10:15 AM 27 Induction of hypocalcemia in non-lactating, non-pregnant Holstein cows fed negative DCAD rations with low, medium, or high concentrations of calcium.

10:45 AM 29 The development of a decision support tool to determine optimal economic treatment decisions by causative mastitis pathogen. D. T. Nolan* and J. M. Bewley, University of Kentucky, Lexington, KY.

11:00 AM 30 Nutrient restriction increases circulating and hepatic ceramide in dairy cows displaying impaired insulin tolerance. A. N. Davis*, J. L. Clegg, D. K. Henry, C. A. Perry, and J. W. McFadden, West Virginia University, Morgantown, WV.

11:15 AM 31 Does the partial mixed ration (PMR) energy density interact with the amount of concentrate offered in an automated milking system (AMS)? S. B. Menajovsky, C. E. Walpole, T. J. DeVries, K. S. Schwartzkopf-Genswein, M. E. Walpole, and G. B. Penner, University of Saskatchewan, Saskatoon, SK, Canada, 2University of Guelph, Guelph, ON, Canada, 3Agriculture and Agri-Food Canada, Lethbridge, AB, Canada, 4DairySmart Nutrition Group, Crediton, ON, Canada.

11:30 AM 32 Using in-line milk progesterone data to characterize luteal activity parameters associated with reduced fertility in dairy herds. T. C. Bruinje, M. G. Colazo, M. Gobikrushanth, and D. J. Ambrose, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, 2Livestock Research Section, Alberta Agriculture and Forestry, Edmonton, AB, Canada.

12:00 PM 34 Growth and metabolic pathways are impacted by milk replacer dietary energy in pre-weaned Holstein heifers. C. E. Owens*, A. J. Geiger, R. M. Akers, and R. R. Cockrum, Virginia Polytechnic Institute and State University, Blacksburg, VA.

12:15 PM 35 The effect of limit-feeding hay on rumen development in pre-weaned Jersey calves. D. E. McCurdy* and A. H. Laarman, University of Idaho, Moscow, ID.

9:30 AM 36 Significance of cow cooling practices and bulk tank milk quality parameters in southeastern United States dairy farms. Z. Mason, D. T. Nolan, P. D. Krawczel, G. M. Pighetti, C. S. Petersson-Wolfe, A. E. Stone, J. M. Bewley, and S. H. Ward, Mississippi State University, Starkville, MS, University of Kentucky, Lexington, KY, University of Tennessee, Knoxville, TN, Virginia Polytechnic Institute and State University, Blacksburg, VA, North Carolina State University, Raleigh, NC.

10:00 AM 38 Effects of milk replacer feeding levels on performance and metabolism of pre-weaned dairy calves during summer. R. M. Orellana, G. H. Komori, V. V. Beihling, T. N. Marins, J. K. Bernard, and S. Tao, University of Georgia, Tifton, GA.
Animal Behavior and Well-Being I
Chair: Katy Proudfoot, Ohio State University
Room 317

9:30 AM 43
Which data recorded by automated calf feeders can help to detect sick calves?
C. Medrano-Galarza*1,2, S. J. LeBlanc1,2, T. J. DeVries1,2, J. Rushen1, A. Jones-Bitton1, M. I. Endres4, and D. B. Haley1,5, 1Department of Population Medicine, University of Guelph, Guelph, ON, Canada, 2Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, 3Faculty of Land and Food, University of British Columbia, Vancouver, BC, Canada, 4Department of Animal Science, University of Minnesota, St. Paul, MN, 5Campbell Centre for the Study of Animal Welfare, University of Guelph, Guelph, ON, Canada.

9:45 AM 44
Daily milk consumption, number of visits, drinking speed and weight gain of preweaned calves in Midwest US farms with automated feeders.
M. Peiter*, M. Jorgensen, and M. I. Endres, University of Minnesota, St. Paul, MN.

10:00 AM 45
Assessment of the effects of oral administration of acetylsalicylic acid on biomarkers of inflammation and stress in dairy cows after parturition.
A. A. Barragan*1, L. M. Bauman2, J. Lakritz3, J. F. Coetzee4, J. Velez5, J. D. Rozo Gonzalez6, G. M. Schuenemann1, and S. Bas1, 1Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 2Department of Animal Sciences, The Ohio State University, Columbus, OH, 3Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, 4Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 5Aurora Organic Farms, Boulder, CO.

10:15 AM 46
Holstein behavioral responses to acidified milk.
A. Adams Progar*, A. Deml, R. Pernu, H. A. Young, and J. Callanan, Washington State University, Pullman, WA.

10:30 AM 47
Clinical trial of local anesthetic protocols for acute pain associated with caustic paste disbudding in dairy calves.
C. Winder*, S. LeBlanc1, D. Haley5, K. Lissemore1, M. Godkin2, and T. Duffield3, 1Dept. of Population Medicine, University of Guelph, Guelph, ON, Canada, 2Ontario Ministry of Agriculture, Food, and Rural Affairs, Elora, ON, Canada.

10:45 AM 48
Effects of acute lying and sleep deprivation on behavior and productivity of Holstein dairy cows.
J. A. Kull*1, G. M. Pighetti1, K. L. Prodoofoot1, J. M. Bewley3, B. F. O’Hara5, K. D. Donohue6, and P. D. Krawczel1, 1Department of Animal Science, The University of Tennessee, Knoxville, TN, 2Department of Preventive Veterinary Medicine, The Ohio State University, Columbus, OH, 3Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 4Department of Animal, University of Kentucky, Lexington, KY, 5Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY.

11:00 AM 49
Dairy cow preference for outdoor access in summer and winter.
A. M. C. Smid*1, E. E. A. Burgers3, D. M. Weary1, E. A. M. Bakkers2, and M. A. G. van Keyserlingk3, 1University of British Columbia, Vancouver, BC, Canada, 2Wageningen University, Wageningen, Gelderland, the Netherlands.
Animal Health I
Chair: Kasey Moyes, University of Maryland
Room 303

C. Bauman* and D. Kelton, University of Guelph, Guelph, ON, Canada.

9:45 AM 51 Handheld equipment for mastitis detection.

10:00 AM 52 Changes in real-time sensor data prior to gram-positive and gram-negative clinical mastitis.
N. M. Steele*1,3, A. Tholen1, A. De Vries1, S. J. Lacy-Hulbert1, R. R. White3, and C. S. Petersson-Wolfe1, 1Department of Dairy Science, Virginia Tech, Blacksburg, VA, 3DairyNZ Ltd., Private Bag 3221, Hamilton, New Zealand, *Department of Animal and Poultry Science, Virginia Tech, Blacksburg, VA.

10:15 AM 53 Laboratory evaluation of on-farm culture-based mastitis tests and the potential effect on treatment decisions.

10:30 AM 54 Development of an on-farm qPCR diagnostic test to detect mastitis pathogens in milk.
A. Sipka*, J. Mills, H. Suliman, F. Rinzan, T. Moshier, B. Rauch, and D. Nydam, 1Quality Milk Production Services, College for Veterinary Medicine, Cornell University, Ithaca, NY, 2Acumen Detection LLC, Syracuse, NY.

10:45 AM 55 In silico identification of natural product inhibitors of Staphylococcus aureus threonyl-tRNA synthetase.
M. Li1,2, N. Zheng1,2, S. L. Li1,3, S. G. Zhao1,4, F. Wen1,3, Y. D. Zhang1,4, and J. Q. Wang*1,2, 1Ministry of Agriculture-Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 2Ministry of Agriculture-Laboratory of Quality and Safety Risk Assessment for Dairy Products, Beijing, China, 3Ministry of Agriculture-Milk and Dairy Product Inspection Center, Beijing, China, 4State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.

11:00 AM 56 LC-MS metabolomic serum signatures indicate that global and disease-specific challenges in protein and lipid metabolism precede clinical mastitis in transition dairy cows.
F. Zandkarimi, C. Maier, and G. Bobe*, Oregon State University, Corvallis, OR.

11:15 AM 57 The resilience of the milk microbiome upon experimental infection with Escherichia coli and treatment with ceftriaxone.
E. Ganda*, N. Gaeta, A. Sipka, B. Pomeroy, G. Oikonomou, Y. Schukken, and R. Bicalho, 1Cornell University, Ithaca, NY, 2University of Liverpool, Liverpool, UK.

11:30 AM 58 Effects of the environmental origin of milk microbiota on milk biodiversity.

11:45 AM 59 Effects of dairy environment on milk microbiota and mammary inflammation.

12:00 PM 60 Casein hydrolysate for involution of a single mastitic quarter in dairy cows.
D. J. Wilson*, J. E. Britten, and K. A. Rood, Utah State University, Logan, UT.

12:15 PM 61 Extended-spectrum beta-lactamase- and AmpC-producing Escherichia coli on dairy farms.
Breeding and Genetics Symposium:
Inbreeding in the Genomics Era

Chair: **Filippo Miglior**, Canadian Dairy Network and CGIL, University of Guelph
Sponsor: **Semex**
Room 315-316

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30 AM</td>
<td>62</td>
<td>Computational aspects of characterizing genomic inbreeding in livestock.</td>
<td>J. T. Howard*, F. Tiezzi, and C. Maltecca, North Carolina State University, Raleigh, NC.</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>63</td>
<td>The effect of genomic selection on dairy cow populations.</td>
<td>J. E. Pryce*1,2, 1.Agriculture Victoria, Bundoora, VIC, Australia, 2.La Trobe University, Bundoora, VIC, Australia.</td>
</tr>
<tr>
<td>10:30 AM</td>
<td>64</td>
<td>Inbreeding depression.</td>
<td>I. Curik*1, M. Ferencakovic1, and J. Sölkner1, 1.Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia, 2.Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>65</td>
<td>What is the optimal measure of genomic inbreeding?</td>
<td>A. C. Sørensen*, Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark.</td>
</tr>
<tr>
<td>11:30 AM</td>
<td>66</td>
<td>Inbreeding in the genomics era the flip side: Crossbreeding.</td>
<td>E. Amuzu-Aweh1,2, P. Bijma1, H. Bovenhuis2, and D. de Koning1, 1.Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2.Department of Animal Breeding and Genetics, Wageningen University, Wageningen, the Netherlands.</td>
</tr>
<tr>
<td>12:00 PM</td>
<td>67</td>
<td>Genomic inbreeding from an industry perspective.</td>
<td>S. A. E. Eaglen*, M. F. Costello, B. M. Haines, and D. G. Wilson, CRV USA, Madison, WI.</td>
</tr>
</tbody>
</table>

Forages and Pastures I

Chair: **Gonzalo Ferreira**, Virginia Tech
Room 329

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30 AM</td>
<td>68</td>
<td>ADSA®-SBZ Speaker Exchange Presentation: The acetyl bromide lignin method to quantify lignin and its implications with forage degradability.</td>
<td>R. S. Fukushima*, Departamento de Nutrição e Produção Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil.</td>
</tr>
<tr>
<td>10:15 AM</td>
<td>70</td>
<td>Production and dry matter intake of dairy cows in mid lactation with different allocation time at grazing in lucerne (Medicago sativa).</td>
<td>A. Santana*, J. Dayuto, M. García, E. Salaberry, C. Cajарville, and J. L. Repetto, Instituto de Producción Animal de Veterinaria, Facultad de Veterinaria, Universidad de la Republica, Libertad, San José, Uruguay.</td>
</tr>
</tbody>
</table>
11:00 AM 73 Relations between silage composition, its metabolome, and preference shown by goats.

11:15 AM 74 Modification of ruminal fermentation and methane production by adding legumes containing condensed tannins to an orchardgrass diet in continuous culture.
A. I. Roca-Fernandez*, S. L. Dillard, M. D. Rubano, M. Baldin, C. I. Dell, J. MacAdam, and K. J. Soder, USDA-Agricultural Research Service, University Park, PA, Universidad de Santiago de Compostela, Lugo, Galicia, Spain, Penn State University, University Park, PA, Utah State University, Logan, UT.

11:30 AM 75 Effect of rehydrating and ensiling dry ground corn with varied concentrations of wet brewers grain on fermentation profile and ruminal in vitro starch digestibility.
W. I. Silva Filho, H. Sultana, and L. F. Ferraretto*, University of Florida, Gainesville, FL.

11:45 AM 76 Development of a berry processing score for sorghum silage.
J. R. Johnson*, J. P. Goeser, and M. J. Brouk, Kansas State University, Manhattan, KS, Rock River Laboratories, Watertown, WI.

12:00 PM 77 Dual-flow continuous culture fermentation of organic BMR sorghum-sudangrass and teff grass to determine digestibility of forages in an organic dairy grazing system.
K. J. Ruh*, B. J. Heins, M. D. Stern, and R. Gardner, University of Minnesota, St. Paul, MN.

12:15 PM 78 Effects of foliar fungicide on whole-plant BMR and floury corn varieties at vegetative tassel and reproductive stages of growth.
M. E. Weatherly, R. T. Pate, L. Hedges, S. Mideros, G. M. Fellows, M. Akins, M. R. Murphy, and F. C. Cardoso, Department of Animal Sciences, University of Illinois, Urbana, IL, Department of Crop Sciences, University of Illinois, Urbana, IL, A.S.F. Corporation, Research Triangle Park, NC, University of Wisconsin-Madison, Marshfield, WI.

12:30 PM 79 Influence of plant population, hybrid relative maturity, and cutting height on yield, nutrient content, and digestibility in whole-plant corn forage.

12:45 PM 80 Forage herbage mass and quality of two different cover cropping systems for grazing organic dairy steers.

Physiology and Endocrinology I
Chair: Erminio Trevisi, Università Cattolica del Sacro Cuore
Room 326

9:30 AM 81 A metabolomics approach to identify novel pathways involved in metabolic transition of periparturient dairy cows.

10:00 AM 82 Methionine and choline feeding during the periparturient period alter the liver metabolome to different extents.
Z. Zhou*, Z. Li, X. Dong, D. Luchini, and J. Loor, University of Illinois, Urbana, IL, Adisseo S.A.S, Alpharetta, GA.

10:15 AM 83 Untargeted metabolomics of skeletal muscle in Holstein cows during the periparturient period in response to feeding rumen-protected methionine or choline.
Z. Zhou*, Z. Li, X. Dong, D. Luchini, and J. Loor, University of Illinois, Urbana, IL, Adisseo S.A.S, Alpharetta, GA.
10:30 AM 84 Muscle-targeted metabolomics in dairy cows during the transition from late pregnancy to early lactation. Y. Yang*1, P. Cornelia2, J. Adamski3, J. Rehage3, S. Dänicke4, H. Sauerwein3, and H. Sadri3, 1Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, Bonn, North Rhine-Westphalia, Germany, 2Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany, 3Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Hannover, Lower Saxony, Germany, 4Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Braunschweig, Lower Saxony, Germany.

10:45 AM 85 Comparison of different treatment strategies for hyperketonemia in early lactation Holstein cows. S. Mann*1, F. Leal Yepes2, E. Behling-Kelly1, and J. McArt1, 1Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 2Department of Animal Science, Cornell University, Ithaca, NY.

11:00 AM 86 Metabolomics profiling of the serum from dairy cow with different milk protein yield using gas chromatography–time of flight/mass spectrometry. X. H. Wu*1, H. Z. Sun1, D. M. Wang2, M. Y. Xue2, L. L. Guan2, and J. X. Liu1, 1Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China, 2Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada.

11:15 AM 87 The effects of α-linolenic acid supplementation on production, health, and fertility of dairy cows. U. Moallem*, L. Lehrer, and L. Lifshitz, Department of Ruminant Science, ARO, Volcani Center, Rishon LeZion, Israel.

12:00 PM 89 Effects of lactational stage and conjugated linoleic acid supplementation on glucose metabolism during hyperglycemic clamps. L. Grossen-Rösti1, E. Kessler1, A. Tröscher2, R. Bruckmaier*1, and J. Gross1, 1Veterinary Physiology, University of Bern, Bern, Switzerland, 2BASF SE, Lampertheim, Germany.

12:00 PM 90 Transcriptional changes in the gut of neonatal dairy calves undergoing a mild diarrhea revealed by a non-invasive technique. F. Rosa1,4, S. Busato1,2, F. C. Avaroma1,2, E. Trevisi1, M. Bionaz1, and J. S. Osorio4, 1Escuela Agricola Panamericana El Zamorano, El Zamorano, Francisco Morazan, Honduras, 2Università Cattolica del Sacro Cuore, Piacenza, Italy, 4South Dakota State University, Brookings, SD.

Production, Management, and the Environment I
Chair: Victor Cabrera, University of Wisconsin, Madison
Room 324

9:45 AM 91 Evaluation of an ear tag based behavior and temperature monitor (Cow Manager) during a heat stress induction trial using electric heat blankets (EHB). M. Al-Qaisi*, L. Timms, and L. Baumgard, Iowa State University, Ames, IA.

10:00 AM 93 1H Nuclear magnetic resonance-based metabolomics of urine in heat-stressed dairy goats. A. Contreras-Jodar*1, N. Nayan1,2, A. A. K. Salama1,2, S. Hamzaoui1,3, and G. Caja1, 1University Autonoma of Barcelona, Bellaterra, Barcelona, Spain, 2Wageningen University, Wageningen, the Netherlands, 3University of Bouira, Bouira, Algeria.

Production and absorption rates of volatile fatty acids are significantly affected by heat stress.
R. R. White*,1,2, L. Beckett1, L. Harthan2, C. Wang3, N. Jiang4, H. Schramm5, K. M. Daniels2, and M. D. Hanigan2, 1Department of Animal and Poultry Science, Virginia Tech, Blacksburg, VA, 2Department of Dairy Science, Blacksburg, VA, 3College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China, 4College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Harbin, Heilongjiang, China, 5College of Veterinary Medicine, Virginia Tech, Blacksburg, VA.

Using calf jackets to minimize cold stress in Jersey calves.
X. Wen*, A. Adams Progar, D. A. Moore, J. H. Harrison, and J. Schafer, Washington State University, Pullman, WA.

Technical and economic performance of Holstein crossbred versus pure Holstein herds using a stochastic simulation model.
M. López-Suárez*,1, L. Castillejos1, M. Piera2, J. M. Loste3, and S. Calsamiglia1, 1Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 2Centre Veterinari Tona, Tona, Barcelona, Spain, 3Albaikide, Irurtzun, Navarra, Spain.

Herd contextual effect modulates the relationship between cow milk yield and reproductive performance.
R. Rearte1,2, S. LeBlanc3, R. de la Sota2,3, S. Corva4, I. Lacau-Mengido4, and M. Giuliodori*,1, 1Cátedra de Higiene, Epidemiología y Salud Pública, Facultad de Ciencias Veterinarias – Universidad Nacional de La Plata (FCV–UNLP), La Plata, Argentina, 2Cátedra y Servicio de Reproducción Animal, FCV–UNLP, La Plata, Argentina, 3Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina, 4Instituto de Biología y Medicina Experimental–CONICET, Buenos Aires, Argentina, 5Department of Population Medicine, University of Guelph, Guelph, ON, Canada, 6Cátedra de Fisiología, FCV–UNLP, La Plata, Argentina.

Precision dairy herd management—A quantile regression approach.
J. Richard* and T. Mark, University of Kentucky, Lexington, KY.

Ruminant Nutrition Symposium:
Metabolomics Applications in Dairy Cow Metabolism
Chair: Timothy Hackmann, University of Florida
Sponsors: Dairy Nutrition Plus and Vetagro
Room 319-320

Discovering isomeric milk metabolites with liquid chromatography drift tube-ion mobility mass spectrometry.
T. Shen, I. Blaženovic, and O. Fiehn*, West Coast Metabolomics Center, University of California-Davis, Davis, CA.

Lipidomic studies can inform on the effects of low-fat or full-fat dairy foods on cardiometabolic health: Potential benefit of full-fat dairy products.
P. J. Meikle*, Baker Heart and Diabetes Institute, Melbourne, Australia.

NMR metabolomic analysis of dairy cows reveals milk glycerophosphocholine to phosphocholine ratio as prognostic biomarker for risk of ketosis.
M. S. Klein1, N. Krattenmacher1, S. Wiedemann2, W. Junge3, G. Thaller2, P. J. Oefner1, and W. Gronwald*, 1Institute of Functional Genomics, University of Regensburg, Regensburg, Bavaria, Germany, 2Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Schleswig-Holstein, Germany.

Characterization of the bovine lipidome: Discovery of the sphingolipid ceramide as a biomarker of insulin resistance in dairy cattle.
J. W. McFadden*, West Virginia University, Morgantown, WV.
Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in dairy cow diets: Application of MetaboAnalyst.

F. Saleem*1,3, O. Zebeli*2, B. N. Ametaj1,2, N. Psychios1, M. J. Lewis1, S. M. Dunn1, J. Xia2, and D. S. Wishart1, 1University of Agriculture Faisalabad, Faisalabad, Pakistan, 2Department of Agricultural, Food and Nutritional Science, Edmonton, AB, Canada, 3Departments of Computing Science and Biological Sciences, University of Alberta, Edmonton, AB, Canada.

Ruminant Nutrition I

Chair: Guillermo Schroeder, Cargill Animal Nutrition

Room 321

Improvement of ruminal fermentation by live yeast in dairy cows.

Y. Huang*1, J. P. Marden1, C. Julien1, E. Auclair1, and C. Bayourthe1, 1GenPhysE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet-Tolosan, France, 2Phileo Lesaffre Animal Care, Marcq-en-Barœul, France.

Evaluation of supplementing brewer’s yeast to lactating dairy cows.

T. C. Aubrey*1, J. L. Anderson1, and A. R. Boyer2, 1Dairy and Food Science Department, South Dakota State University, Brookings, SD, 2Kent Nutrition Group, Muscatine, IA.

Effects of *Saccharomyces cerevisiae* fermentation products and subacute ruminal acidosis (SARA) on apparent digestibility of dry matter, NDF, and phosphorus in lactating dairy cows.

V. P. Senaratne*1, H. Khalouei1, K. Fehr1, J. Guo1, I. Yoon1, E. Khafipour1, and J. C. Plaizier1, 1Department of Animal Science, University of Manitoba, Winnipeg, Canada, 2Diamond V, Cedar Rapids, IA.

Effects of *Saccharomyces cerevisiae* fermentation products on endotoxins and acute phase proteins in lactating dairy cows.

J. Guo1, H. Khalouei1, K. Fehr1, V. Senaratne1, Z. Zhang1, H. Derakhshani1, M. Scott2, G. Crow1, I. Yoon*1, E. Khafipour1, and J. C. Plaizier1, 1University of Manitoba, Winnipeg, Canada, 2Diamond V, Cedar Rapids, IA.

Effect of sequestering agents based on a *Saccharomyces cerevisiae* fermentation product and clay on the performance of lactating dairy cows challenged with dietary aflatoxin B1.

Y. Jiang*1, D. H. Kim1, I. M. Ogunde1, X. Li1, A. A. Pech-Cervantes1, A. S. Oliveira1, K. G. Arriola1, A. Mayer-Camocho1, J. P. Driver1, C. R. Staples1, D. Vyas1, and A. T. Adesogan1, 1Department of Animal Sciences, University of Florida, Gainesville, FL, 2Department of Animal Sciences, China Agricultural University, Beijing, China, 3Institute of Agriculture and Environmental Sciences, Federal University of Mato Grosso, Sinop, MT, Brazil.

Effects of phytonutrients or ionophore on productivity, blood cells, and fat mobilization in lactating dairy cows.

J. Oh*1, M. Harper1, E. Wall1, and A. Hristov1, 1The Pennsylvania State University, University Park, PA, 2Pancosma, Geneva, Switzerland.

Effect of tea saponins on milk performance, milk fatty acids, and immune function in dairy cows.

B. Wang*1,2, Y. Tu1, J. X. Liu4, B. H. Xiong1, and L. S. Jiang1, 1Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China, 2Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China, 3Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China, 4State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.

Improving the long-chain fatty acid profile of milk and cheese in dairy cows by supplementation with microalgae.

B. E. Till*, J. A. Huntington1, J. Taylor-Pickard1, and L. A. Sinclair1, 1Harper Adams University, Shropshire, UK, 2Alltech Biotechnology Institute, Dunboyne, Ireland.

The effect of calcareous marine algae, with or without marine magnesium oxide, and sodium bicarbonate on milk production in mid-lactation dairy cows.

E. W. Neville*1, A. G. Fahey1, B. P. Molloy1, S. J. Taylor1, and F. J. Mulligan1, 1School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland, 2School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland, 3Celtic Sea Minerals, Carrabbinny, Carrigaline, Cork, Ireland.

Effects of an exogenous enzyme blend on dry matter intake and performance of lactating dairy cows.

Bacterial expansins: A novel approach to improve efficacy of exogenous fibrolytic enzymes.

Effect of a recombinant bacterial expansin (BsEXLX1) and fibrolytic enzymes on in vitro digestibility and preingestive hydrolysis of bermudagrass silage.

Small Ruminant Symposium:
New Opportunities for Dairy Sheep and Goats
Chair: Gerardo Caja, University Autonoma of Barcelona
Sponsor: European Association of Animal Production (EAAP)
Room 310-311

9:30 AM Introduction.
G. Caja.

9:35 AM Current market trends of sheep and goat milk, farm structures and production costs.
G. Pulina, M. J. Milán Sendra, M. P. Lavin, A. Theodoridis, E. Morin, and J. Capote, 1University of Sassari, Sassari, Italy, 2University Autonoma of Barcelona, Bellaterra, Barcelona, Spain, 3Consejo Superior de Investigaciones Científicas, León, Spain, 4Aristotle University of Thessaloniki, Thessaloniki, Greece, 5Institut de l’Élevage, Paris, France, 6Canary Islands Institute of Agricultural Research, Canary Islands, Spain.

10:00 AM ADSA®-EAAP Speaker Exchange Presentation: Compositional and functional differences of ewe and goat’s milk and dairy products with regard to cow’s milk and dairy products.
P. Roncada, P. de Frutos, A. Nudda, and N. Castro Navarro, 1Istituto Sperimentale Italiano Lazzaro Spallanzani, Milano, Italy, 2CSIC-Universidad de L, Grulleros, León, Spain, 3Università degli Studi di Sassari, Sassari, Italy, 4Universidad de las Palmas de Gran Canaria, Arucas, Gran Canaria, Spain.

10:25 AM Update on lactation biology and milking strategies of small ruminants.
M. Rovai, G. Caja, A. Argüello, C. Peris, X. Such, and P.-G. Marnet, 1University Autonoma of Barcelona, Bellaterra, Barcelona, Spain, 2Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Valdepeñas, Castilla-La Mancha, Spain, 3Polytechnic University of Valencia, Valencia, Spain, 4Agrocampus-Ouest, Rennes, France.

10:50 AM Break

11:05 AM Currently available genetic resources in the United States for dairy sheep and dairy goat production.

11:30 AM Intake prediction and energy requirements for lactating small ruminants: Comparison of systems.
A. Cannas, F. Bocquier, P. Hassoun, S. Giger-Reverdin, D. Sauvant, and G. Caja, 1University of Sassari, Sassari, Italy, 2INRA-Montpellier SupAgro, Montpellier, France, 3INRA, Montpellier, France, 4INRA-AgroParisTech-Université Paris-Saclay, Paris, France, 5Texas A&M University, College Station, TX, 6University Autonoma of Barcelona, Bellaterra, Barcelona, Spain.
A. A. K. Salama*1, D. R. Yañez-Ruiz2, C. Fernandez3, N. Koluman4, M. Ramon5, N. Silanikove6, A. Goetsch7, and G. Caja1,
1Group of Ruminant Research (G2R), Universitat Autonoma de Barcelona, Bellaterra, Spain, 2Estación Experimental del Zaidín (CSIC), Armilla, Granada, Spain, 3Research Centre ACUMA, Animal Science Department, Polytechnic University of Valencia, Valencia, Spain, 4Cuкуrova University, Agricultural Fac., Department of Animal Science, Adana, Turkey, 5Centro Regional de Selección y Reproducción Animal (CERSYRA-IRIAF), Valdepeñas, Spain, 6Institute of Animal Science, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel, 7American Institute for Goat Research, Langston University, Langston, OK.

12:20 PM
Joint discussion and concluding remarks.
G. Caja.

Teaching/Undergraduate and Graduate Education Symposium:
Mentoring in Dairy Science
Chair: Antonio Faciola, University of Nevada
Sponsor: Elanco Animal Health
Room 301-302

9:30 AM 123 Mentoring undergraduate students in dairy science.
L. Berning*, California Polytechnic State University, San Luis Obispo, CA.

9:55 AM 124 Mentoring minorities in dairy and animal sciences.
R. Noble*, North Carolina A&T State University.

10:20 AM 125 Mentoring graduate students as a young faculty: Challenges and opportunities.
A. Faciola*, University of Nevada, Reno, NV.

10:45 AM 126 Mentoring and empowering women in dairy science.
K. M. Schoenberg*, Elanco Animal Health, Greenfield, IN.

11:10 AM 127 Mentoring postdocs in an increasingly competitive environment.
P. Clifford*, University of Illinois at Chicago, Chicago, IL.

11:35 AM 128 Mentoring young faculty to succeed in teaching and research.
K. A. Weigel*, Department of Dairy Science, University of Wisconsin, Madison, WI.

12:00 PM Panel discussion with speakers

ADSA-SAD Dairy Foods Undergraduate Student Oral Competition
Chair: Jillian Bohlen, University of Georgia
Room 333

11:00 AM 129 The role of flavored milk in school nutrition.
B. Bowman*, D. Winston, and K. Daniels, Virginia Tech, Blacksburg, VA.

11:15 AM 130 Exploring the market for goat milk products.
L. Scott*, Clemson University, Clemson, SC.

11:30 AM 131 The health benefits of donkey milk.
N. P. Uzee* and C. C. Williams, Louisiana State University, Baton Rouge, LA.
11:45 AM
Health benefits of whole milk in comparison with other milk fat options.
S. E. Mac*, C. M. Truman, and J. M. Bewley, University of Kentucky, Lexington, KY.

12:00 PM
Whey management options in Greek yogurt production.
Z. Curtis* and D. Olver, Pennsylvania State University, University Park, PA.

12:15 PM
The potential impact of a novel canned latté on the North American dairy products market.
K. Alward* and J. Bohlen, University of Georgia, Athens, GA.

ADSA Production Division Symposium:
Future of the Dairy Sector Toward 2030
Chair: Cathleen Williams, Louisiana State University
Sponsor: Elanco Animal Health
Room 315-316

2:00 PM
Vision on dairy cattle nutrition towards 2030.
M. D. Hanigan* and R. R. White*, Virginia Tech, Blacksburg, VA.

2:30 PM
ADSA®-EAAP Speaker Exchange Presentation: Vision on dairy cattle physiology and limits of milk production growth towards 2030.
R. M. Bruckmaier*, J. J. Gross1, and H. Sauerwein*, 1Veterinary Physiology Vetsuisse Faculty, University of Bern, Bern, Switzerland, 2University of Bonn, Institute for Animal Science, Bonn, Germany.

3:00 PM
ADSA®-EAAP Speaker Exchange Presentation: Dutch vision on environmental and system aspects of dairy farming towards 2030.
K. de Koning*1, P. Galama2, and A. Kuipers2, 1Wageningen Livestock Research–Dairy Campus, Leeuwarden, the Netherlands, 2Wageningen Livestock Research, Wageningen, the Netherlands.

3:30 PM
The global dairy industry of the future—Technology and trends in milk quality and animal health towards 2030.
P. L. Ruegg*1 and A. Kuipers*1, 1University of Wisconsin, Madison, 2Foundation Agro Management Tools Wageningen UR, Wageningen, the Netherlands.

4:00 PM
Vision on milk and dairy products and human health towards 2030.
A. L. Lock*1 and D. E. Bauman2, 1Michigan State University, East Lansing, MI, 2Cornell University, Ithaca, NY.

4:30 PM
Interactive debate between speakers and audience: How will the dairy sector look in 2030.
Moderators: Roger Cady, Elanco, and Abele Kuipers, Wageningen University and Research.

ADSA Graduate Student (PhD) Production Oral Competition
Chair: Heather Dann, Miner Institute
Room 309

2:00 PM
Effects of camellina cake supplementation at two dietary fat levels on ruminal fermentation and nutrient flow in a dual-flow continuous culture system.

2:15 PM
Temporal changes of milk odd- and branched-chain fatty acids in response to acidogenic diets fed to dairy cows.
E. Baumann*, P. Y. Chouinard, A. R. Alfonso-Avila, and R. Gervais, Université Laval, Québec, QC, Canada.

2:30 PM
The milk microbiome of healthy and inflamed mammary quarters through the dry period and first 150 days of lactation.
2:45 PM 143 An on-farm algorithm to guide selective dry-cow therapy.
A. K. Vasquez*, C. Foditsch†, M. Wieland†, R. A. Lynch‡, P. D. Virkler§, S. Eicker∥, and D. V. Nydam¶, 1Cornell University College of Veterinary Medicine, Ithaca, NY, 2Department of Animal Science, Cornell University, Ithaca, NY, 3Valley Ag. Software, Tulare, CA.

3:00 PM 144 Advancement of Dairying in Austria (ADDA): Conventional dairy farm management with respect to mastitis prevention and detection.
C. L. Firth*, C. Schleicher**, A. Käsbohrer†, and W. Obrizthauser‡, 1University of Veterinary Medicine. Institute of Veterinary Public Health, Vienna, Austria, 2Austrian Agency for Health and Food Safety (AGES), Integrated Risk Assessment, Data and Statistics, Graz, Styria, Austria.

3:15 PM 145 Effects of oral administration of acetylsalicylic acid after parturition on milk yield and milk components in lactating dairy cows under certified organic management.
A. A. Barragan*, L. M. Bauman†, L. de Costa‡, J. Velez§, J. D. Rozo Gonzalez∥, G. M. Schuenemann¶, and S. Bas∥, 1Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 2Department of Animal Sciences, The Ohio State University, Columbus, OH, 3Valley Ag. Software, Tulare, CA.

3:30 PM 147 Feeding increasing amounts of ruminally-protected choline (RPC) increasingly reduced fatty liver of Holstein cows.

3:45 PM 148 Ethyl-cellulose rumen-protected methionine supply during late gestation enhances nutrient transporter expression in bovine placenta and calf birth weight.
F. Batistel*, A. S. M. Alharthi†, B. Saremi‡, C. Parys∥, and J. J. Loor∥, 1University of Illinois at Urbana-Champaign, Urbana, IL, 2Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Germany.

4:00 PM 149 Effect of diet composition on rumen development in Holstein bull calves.

4:15 PM 150 Ruminal pH in Holstein dairy bull calves from pre-weaning to post-weaning.
J. K. van Niekerk*, M. Middeldorp, and M. A. Steele, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.

4:30 PM 151 Alteration of intrinsic molecular structure by steam flaking process improved gastrointestinal digestion of carbohydrate in dairy cows.
N. Xu*†, J. Liu‡, and P. Yu∥, 1Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China, 2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada.

4:45 PM 146 Energy intake and balance of cows in the early postpartum period is affected by diet starch content and fermentability.
R. Albornoz* and M. Allen, Michigan State University, Lansing, MI.

ADSA Southern Section Symposium:
Key Considerations for Improving Milk Quality in the Southeast
Chair: Peter Krawczel, University of Tennessee
Room 318

2:00 PM 152 Getting inside their heads: Dairy farmers’ attitudes and behaviors that affect milk quality.
S. M. Schexnayder* and P. D. Krawczel, University of Tennessee, Knoxville, TN.

2:30 PM 153 Considerations for managing mastitis and milk quality on organic dairy farms.
K. A. E. Mullen*, North Carolina State University, Raleigh, NC.

3:00 PM 154 The role of housing facilities and management in improving milk quality.
A. E. Stone* and P. D. Krawczel*, 1Mississippi State University, Starkville, MS, 2University of Tennessee, Knoxville, TN.

83
The role of technology in quantifying mastitis-related decisions.
J. M. Bewley*, University of Kentucky, Lexington, KY.

Break

ADSA Southern Section Business Meeting

ADSA-SAD Dairy Production Undergraduate Student Oral Competition
Chair: Jillian Bohlen, University of Georgia
Room 334

Using supplemental oxygen for newborn calves on dairy farms.
H. Kuester* and S. Kehoe, University of Wisconsin-River Falls, River Falls, WI.

Grocery by-product waste and how dairy cattle can help.
S. J. Garbowski*, A. E. Goho, and G. J. Lascano, Clemson University, Clemson, SC.

Serotonin precursor treatment: An emerging preventative method for hypocalcemia in transitioning dairy cows.
C. M. Kenny*, C. C. Williams, and S. J. Blair, Louisiana State University, Baton Rouge, LA.

The effects of grain-induced subacute ruminal acidosis on rumen epithelial transporters and volatile fatty acid concentrations.
L. Beckett*, R. White, and D. Winston, Virginia Tech, Blacksburg, VA.

Using genomic selection to improve dairy cattle heat tolerance.
C. N. Folmar*, C. M. Truman, and J. M. Bewley, University of Kentucky, Lexington, KY.

Measuring fecal cortisol metabolites to assess the impact of management stressors on dairy cattle.
Y. I. Ruiz* and J. M. Huzzey, California Polytechnic State University, San Luis Obispo, CA.

The impacts of manure management in dairy production.
B. Young*, West Virginia University, Morgantown, WV.

Invisible impacts of mastitis: The long-term reproductive loss.
E. Brenengen* and D. Olver, Pennsylvania State University, University Park, PA.

Evaluating the migration toward automated calf feeders on calf performance.
M. Wright* and J. Bohlen, University of Georgia, Athens, GA.

ADSA-SAD Original Research Undergraduate Student Oral Competition
Chair: Leanne Berning, California Polytechnic State University
Room 333

The effects of body condition and dietary starch content on first ovulation postpartum in dairy cows.
K. V. Murphy**, D. J. Ambrose**, and M. Oba*, 1Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, 2Livestock Research Section, Alberta Agriculture and Forestry, Edmonton, AB, Canada.

Exposure of dairy cows to heat stress during late gestation or while in utero affects mammary gland microstructure.
2:30 PM 167 Effects of trace mineral injections on liver and blood trace mineral concentrations in dairy cattle.
K. Kelly*, E. Eckelkamp, B. Kawonga, D. Tracy, C. Fendley, and J. Bewley, University of Kentucky, Lexington, KY, Multimin USA, Fort Collins, CO.

2:45 PM 168 Characterization of milk cellular response to intramammary phytoceutical administration in cows with clinical mastitis.
C. M. Womble*, K. A. E. Mullen, S. P. Washburn, and K. L. Anderson, Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC.

3:00 PM 169 Genetic analysis of kickoff behavior in automatic milking systems.
K. Sondericker*, L. Hardie, and C. Dechow, The Pennsylvania State University, University Park, PA.

3:15 PM 170 Relationship between lying behavior and subclinical ketosis in Holstein and Jersey dairy cows.
O. Duner*, K. Kutina, Y. Ruiz, E. Whisler, and J. Huzzey, California Polytechnic State University, San Luis Obispo, CA.

3:30 PM 171 The effect of electric disbudding on the reaction of phytohemagglutinin-P in Holstein calves.
A. Taylor* and S. I. Kehoe, University of Wisconsin-River Falls, River Falls, WI.

3:45 PM 172 Flaxseed containing lipid supplement increases omega-3 content in milk by protecting dietary omega-3 from ruminal biohydrogenation.
R. Wilson*, S. Akers, K. Swanson, M. Keller, L. Goddick, G. Cherian, R. Day, and G. Bobe, Oregon State University, Corvallis, OR, N3Feed LLC, Tualatin, OR.

4:00 PM 173 Estimating urinary nitrogen using creatinine in cows fed adequate and protein deficient diets.
D. M. Andreen*, E. Liu, and M. J. VandeHaar, Michigan State University, East Lansing, MI.

Animal Health: Joint ADSA-National Mastitis Council Symposium:
Mastitis Control and Milk Quality Globally: Past, Present, and an Amazing Future
Chair: Leo Timms, Iowa State University
Room 301-302

2:00 PM 174 Mastitis control: Past, present, and future, and milk quality globally.
L. Timms*, Iowa State University, Ames, IA.

2:15 PM 175 Genetics, genomics, and improving mastitis resistance.
G. M. Pighetti*, University of Tennessee, Knoxville, TN.

2:30 PM 176 Novel genomic and phenotypic strategies to improve mastitis resistance and milk quality.
P. Martin, H. Barkema, S. G. Narayana, and F. Miglior*, CGIL, Dept of Animal Biosciences, University of Guelph, Guelph, ON, Canada, Dept of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada, Canadian Dairy Network, Guelph, ON, Canada.

2:45 PM 177 Genome-wide association analyses identify loci associated with mastitis phenotypes generated from Streptococcus uberis experimental challenge data.
L. Siebert*, M. E. Staton, S. P. Oliver, and G. M. Pighetti, University of Tennessee, Knoxville, TN.

3:00 PM 178 Mastitis therapy: Past successes, current challenges, and vision for the future.
J. Middleton*, University of Missouri, Columbia, MO.

3:25 PM Break

3:40 PM 179 Modulating adipose tissue lipolysis and remodeling to improve immune function in early lactation.
G. A. Contreras*, C. Strieder Barboza, and J. De Koster, Department of Large Animal Clinical Sciences, East Lansing, MI.

3:55 PM 180 Targeting antimicrobial defenses of the udder through intrinsic cellular pathways.
Challenges to milking efficiency: Quality versus quantity.
R. Erskine* and R. Moore-Foster, Michigan State University, East Lansing, MI.

Data, decisions, and mastitis.
J. M. Bewley*, University of Kentucky, Lexington, KY.

Measuring parlor performance from a cow’s perspective.
R. Moore-Foster* and R. Erskine, Michigan State University, East Lansing, MI.

Animal Health II
Chair: Michael Ballou, Texas Tech University
Room 303

Monitoring dairy cattle health and husbandry including by use of drones.
D. J. Wilson*, L. E. Cheetham, and K. A. Rood, Utah State University, Logan, UT.

Real-time automatic system for calving detection in dairy cows.
A. Arazi* and D. Rak, Afimilk, Afikim, Israel.

How to sanitize dairy herds from the contagious genotype B of Staphylococcus aureus? A new molecular biology approach.
C. Sartori*1,2 and H. U. Graber2, 1ETH, Zurich, Switzerland, 2Agroscope, Bern, Switzerland.

Effects of dexamethasone and opsonized Mycoplasma bovis on bovine neutrophil function in vitro.
H. A. Alabdullah*1, L. K. Fox1, J. M. Gay1, G. M. Barrington1, and R. H. Mealey1, 1Department of Clinical Science, Washington State University, Pullman, WA, 2Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA.

Changes in galectin gene expression in bovine blood during the periparturient period.
E. Asiamah*1, S. Adjei-Fremah1, K. Ekwemalo1, M. Worku1, L. Sordillo2, and J. Gandy1, 1North Carolina A&T State University, Greensboro, NC, 2Michigan State University, East Lansing, MI.

Effect of prepartum energy balance on neutrophil function following pegbovigrastim treatment in periparturient cows.
S. McDougall1, S. LeBlanc*2, and A. Hesier1, 1Cognosco, AnexaFVC, Morrinsville, New Zealand, 2Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, 3AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand.

Pegbovigrastim affected gene expression in neutrophils of transition cows indicating increased neutrophil function.
A. Heiser1, S. LeBlanc*2, and S. McDougall1, 1AgResearch, Palmerston North, New Zealand, 2Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, 3Cognosco, AnexaFVC, Morrinsville, New Zealand.

Epidemiology of bovine respiratory disease in pre-weaned dairy calves in California.
S. A. Dubrovsky*, A. L. Van Eenennaam3, B. M. Karle2, T. W. Lehenbauer1,4, and S. S. Aly4,4, 1Department of Animal Science University of California Davis, Davis, CA, 2University of California Cooperative Extension, Orland, CA, 3Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, 4Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA.

The effect of lung consolidation, as determined by ultrasonography, on first lactation milk production in Holstein dairy calves.
T. R. Dunn*, T. L. Ollivett2, D. L. Renaud1, and D. F. Kelton1, 1Department of Population Medicine, University of Guelph, Guelph, ON, Canada, 2Department of Medical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI.

Associations between respiratory disease type and average daily gain in preweaned group-housed dairy calves.
M. C. Cramer*1 and T. L. Ollivett2, 1University of Wisconsin-Madison, Department of Dairy Science, Madison, WI, 2University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI.
4:30 PM 194 Time lost to disease in dairy cattle: Associations between two consecutive lactations.
P. Bacigalupo-Sanguesa*, C. McConnel, F. Garry, J. Lombard, and P. Pinedo, 1Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 2Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 3USDA-APHIS-VS-Center for Epidemiology and Animal Health, Fort Collins, CO, 4Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO.

4:45 PM 195 Metagenomic analysis of fecal microbiomes in cattle infected with Mycobacterium avium ssp. paratuberculosis.
N. Indugu*, D. Pitta, B. Bhukya, B. Vecchiarelli, M.-E. Fecteau, and R. Sweeney, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, PA.

Bioethics Symposium:
Sustainable Dairy Farm
Chair: Leorges Fonseca, Universidade Federal de Minas Gerais, Brazil
Room 310-311

2:00 PM Welcoming remarks

2:00 PM 196 Influence of public perception on future dairy cattle management practices.
M. Armfelt*, Elanco Dairy Business.

2:30 PM 197 Environmental sustainability in dairy production.
V. Moreira* and B. LeBlanc, 1LSU Agricultural Center School of Animal Sciences, Baton Rouge, LA, 2LSU Agricultural Center School of Plant, Environment and Soil Sciences, Baton Rouge, LA.

3:00 PM Break

3:15 PM 198 Driver and barriers to farmer adoption of sustainable practices.
M. Niles*, University of Vermont, Burlington, VT.

3:45 PM Availability of water and its impact on management practices and location of dairies.
R. Hagevoort*, New Mexico State University.

4:15 PM 199 Antibiotic residues and resistance in sustainable dairy farming.
G. Habing*, Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH.

4:45 PM Discussion and concluding remarks

Breeding and Genetics I:
Fertility and Efficiency
Chair: Christine Baes, CGIL, University of Guelph
Room 317

2:00 PM 200 Genetic dissection of bull fertility in dairy cattle.
Y. Han1, P. Nicolini1,2, and F. Peñagaricano*, 1University of Florida, Gainesville, FL, 2Universidad de la República, Tacuarembo, Uruguay.

2:15 PM 201 Predicting bull fertility using genomic data and biological information.
R. Abdollahi-Arpanahi1,2, G. Morota1, and F. Peñagaricano*, 1University of Florida, Gainesville, FL, 2University of Tehran, Tehran, Iran, 3University of Nebraska-Lincoln, Lincoln, NE.

2:30 PM 202 Evaluation of conception rates of sex-sorted semen in commercial dairy farms over the last five years.
C. Heuer*, D. Kendall, C. Sun, J. Deeb, J. Moreno, and R. Vishwanath, ST Genetics, Navasota, TX.
Simulating the underlying variation in fertility: Combining physiology and genetics.
N. A. Dennis*1, K. Stachowicz1, B. Visser1, F. S. Hely1, D. K. Berg1, N. C. Friggens2, P. R. Amer1, S. Meier1, and C. R. Burke1, 1AbacusBio Ltd, Dunedin, New Zealand, 2AgroParisTech, Paris, France, 3AgResearch Ltd, Hamilton, New Zealand, 4DairyNZ Ltd, Hamilton, New Zealand.

Estimating epistatic and dominance genetic variances for fertility and reproduction traits in Canadian Holstein cattle.
K. Alves*1, M. Sargolzaei1,2, C. Baes1, A. Robinson1, and F. Schenkel1, 1Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada, 2The Semex Alliance, Guelph, ON, Canada.

Discovery of a haplotype affecting fertility in Ayrshire dairy cattle and identification of a putative causal variant.
D. J. Null*1, J. L. Hutchison3, D. M. Bickhart1, P. M. VanRaden1, and J. B. Cole1, 1Animal Genomics and Improvement Laboratory, ARS, USDA, Beltsville, MD, 2U.S. Dairy Forage Research Center, ARS, USDA, Madison, WI.

Predictions for workability and reproductive traits using two-step and single-step genomic BLUP in Canadian Holsteins.
A. R. Guarini*1, D. A. L. Lourenço3, L. F. Brito1, M. Sargolzaei1,2, C. Baes1, F. Miglior1,4, I. Misztal2, and F. S. Schenkel1, 1Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada, 2Department of Animal and Dairy Science, University of Georgia, Athens, GA, 3The Semex Alliance, Guelph, ON, Canada, 4Canadian Dairy Network, Guelph, ON, Canada.

Value of thermal images as predictors of feed conversion efficiency in New Zealand Friesian dairy cattle.
M. Camara*, K. McDonald, M. Olayemi, and J. Bryant, DairyNZ, Hamilton, New Zealand.

Determining the economic value for efficiency traits.
C. Richardson*, C. Baes1, P. Amer1, C. Quinon1, F. Hely1, P. Martin1, V. Osborne1, J. Pryce1, and F. Miglior1,2, 1University of Guelph, Guelph, ON, Canada, 2Canadian Dairy Network, Guelph, ON, Canada, 3AbacusBio Limited, Dunedin, Otago, New Zealand, 4Development, Jobs, Transport and Resources, AgriBio, Bundoora, VIC, Australia, 5La Trobe University, AgriBio, Bundoora, VIC, Australia.

Preliminary genomic predictions of feed saved for 1.4 million Holsteins.
P. M. VanRaden*, J. R. Wright1, E. E. Conner1, M. J. VandeHaar2, R. J. Tempelman2, J. S. Liesman2, L. E. Armentano3, and K. A. Weigel3, 1Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 2Michigan State University, East Lansing, MI, 3University of Wisconsin, Madison, WI.

Breeding strategies for improving feed efficiency in Holstein cattle using ZPLAN+.
K. Houlanhan*, F. Miglior1,2, C. Maltecca3, B. Gredler4, A. Fleming1, and C. Baes1, 1University of Guelph, Guelph, ON, Canada, 2Canadian Dairy Network, Guelph, ON, Canada, 3North Carolina State University, Raleigh, NC, 4Qualitas AG, Zug, Switzerland.

A comparison of feed intake, production, body condition score, body weight, and frame size of ProCROSS crossbred versus Holstein cows during the first 150 days of first lactation.
B. N. Shonka-Martin*, B. J. Heins2, and L. B. Hansen1, 1University of Minnesota, St. Paul, MN, 2West-Central Research and Outreach Center, Morris, MN.

Impact of pasture versus indoor feeding systems on quality characteristics, nutritional composition, sensory and volatile properties of full-fat Cheddar cheese.

Dairy Foods I:
Dairy Products
Chair: Zeynep Ustunol, Michigan State University
Room 331

Impact of pasture versus indoor feeding systems on quality characteristics, nutritional composition, sensory and volatile properties of full-fat Cheddar cheese.

Dairy Foods I:
Dairy Products
Chair: Zeynep Ustunol, Michigan State University
Room 331

Impact of pasture versus indoor feeding systems on quality characteristics, nutritional composition, sensory and volatile properties of full-fat Cheddar cheese.
Feeding reduced-fat dried distillers grains with solubles to lactating Holstein dairy cows does not negatively influence quality of baby Swiss cheese.
E. D. Testroet*, M. R. O’Neil, D. C. Beitz, and S. Clark, Iowa State University, Ames, IA.

Chemical and sensory characteristics of Chanco cheese from dairy cows supplemented with olive oil and partially hydrogenated vegetable oil.
E. Vargas-Bello-Pérez*, C. Garrido, C. Geldsetzer-Mendoza, M. S. Morales, P. Toro-Mujica, R. A. Ibáñez, and P. C. Garnsworthy, Departamento de Ciencias Animales, Pontificia Universidad Católica de Chile, Santiago, Chile, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom.

Determination of native lactoferrin in milk using HiTrap Heparin HP column coupled with HPLC.

Development and quality enhancement of cottage-type cheese made from Nili Ravi buffalo postpartum milk (colostrum).
M. Batool, S. Inayat, M. Ayaz, S. Ahmad, and S. Akhtar, University of Veterinary & Animal Sciences, Lahore, Punjab, Pakistan.

Flavor profile of UHT conjugated linoleic acid-enriched milk based on headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry.
M. Leal-Davila, J. Curtis, M. Saldaña, and S. Martinez-Monteagudo, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, Dairy and Food Science Department, South Dakota State University, Brookings, SD.

Evaluation of electrical bioimpedance spectroscopy in estimate the milk composition, SCC, and milk ethanol stability—Preliminary results.
C. M. M. R. Martins, E. A. Veiga, D. C. M. Fonseca, B. G. Alves, and M. V. Santos, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil, Bionexus Tecnology, Chapecó, Brazil.

Practical training method for animal-based welfare assessments in dairy cattle.

Comparison of online, hands-on, and a combined approach for teaching cautery disbudding technique, including administration of a cornual nerve block, to dairy producers.
C. Winder, S. LeBlanc, D. Haley, K. Lissemore, M. Godkin, and T. Duffield, Dept. of Population Medicine, University of Guelph, Guelph, ON, Canada, Ontario Ministry of Agriculture, Food, and Rural Affairs, Elora, ON, Canada.

Bovine respiratory disease prevalence estimation in pre-weaned dairy calves using a mobile application.
B. M. Karle, S. S. Aly, D. R. Williams, J. W. Stackhouse, A. L. Van Eenennaam, and T. W. Lehenbauer, University of California Cooperative Extension, Orland, CA, Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, UC Davis Veterinary Medicine Teaching and Research Center, Tulare, CA, University of California Cooperative Extension, Eureka, CA, Department of Animal Science, University of California, Davis, CA.
Bringing udder health to life: Using data visualization to improve student and dairy producer learning.
S. Roche*1,2, D. Kelton3, A. Godkin4, K. Hand4, and D. Shock5, 1ACER Consulting, Guelph, ON, Canada, 2University of Guelph, Guelph, ON, Canada, 3Ontario Ministry of Food, Agriculture and Rural Affairs, Guelph, ON, Canada, 4Precision Strategic Solutions, Guelph, ON, Canada, 5Main Street/Upper Grand Veterinary Services, Guelph, ON, Canada.

NRCS Pilot Feed Management Project—What did we learn?

Dairy employee training: A new extension educational approach.
M. Rovai*1, H. Carroll2, R. Foos3, T. Erickson1, and A. Garcia1, 1Dairy and Food Science Department, South Dakota State University, Brookings, SD, 2Animal Science Department, South Dakota State University, Brookings, SD, 3Department of Occupational Safety and Ergonomics, Colorado State University, Fort Collins, CO.

The fact and fiction about dairy personnel training and performance.
G. M. Schuenemann*, J. D. Workman, J. M. Piñeiro, B. T. Menichetti, A. A. Barragan, and S. Bas, Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH.

Validation of dryer bag as a new method to estimate moisture content in feedstuffs.
W. da Silva Machado* and M. I. Marcondes, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.

Maximizing income over feed cost by grouping cows with mixed-integer programing.
Y. Wu*, V. Cabrera, and R. Shaver, University of Wisconsin-Madison, Madison, WI.

Forages and Pastures Symposium:
Multidimensional Functions of Forages and Pastures for Dairy Production
Chair: André Fonseca de Brito, University of New Hampshire
Sponsor: BIOMIN America
Room 329

The role of nutrition in dairy cow health and welfare in grazing systems.
J. Roche*1, G. Zobel*2, J. Huzzey3, and J. Loo4, 1DairyNZ, Hamilton, New Zealand, 2AgResearch, Hamilton, New Zealand, 3Cal Poly, San Luis Obispo, CA, 4University of Illinois, Urbana, IL.

The impact of forages and their quality on the efficiency of dairy production.
R. D. Shaver*, Department of Dairy Science. University of Wisconsin, Madison, WI.

The filling effect of forages and its effect on feed intake of lactating cows.
M. Allen*, Michigan State University, East Lansing, MI.

The influence of forage feeding on the ruminal microbiome of dairy cattle and its implications for dairy production.
P. J. Weimer*1,2, 1USDA-ARS, Madison, WI, 2University of Wisconsin-Madison, Madison, WI.
2:00 PM

Hepatic mTORC2 synchronizes glucose and fatty acid metabolism to sustain cellular energy status.
S. I. Arriola Apelo*1,2, X. Guo2, A. Lin1,3, E. J. Meyer1,5, N. E. Cummings1,3, C. Pumper1,5, D. J. Paglialini4,6, and D. W. Lamming1,5. 1Department of Medicine, University of Wisconsin-Madison, Madison, WI, 2Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 3Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, 4Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 5William S. Middleton Memorial Veterans Hospital, Madison, WI, 6Morgridge Institute for Research, Madison, WI.

2:15 PM

Association between bone and energy metabolism in calcidiol treated dairy cows.
R. M. Rodney1,2, N. P. Martinez1, P. Celi8, J. E. P. Santos1, D. R. Fraser2, and I. J. Lean1,2, 1Scibus, Camden, NSW, Australia, 2School of Life and Environmental Sciences, Faculty of Veterinary Science, University of Sydney, Camden, NSW, Australia, 3Department of Animal Sciences, University of Florida, Gainesville, FL, 4DSM Nutritional Products, Animal Nutrition and Health, Columbia, MD, 5Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.

2:30 PM

Blue light from light-emitting diodes (LEDs) directed at a single eye elicits a dose-dependent suppression of melatonin in dairy cows.
B. A. Murphy1, M. M. Herlihy2, M. B. Nolan3, and S. T. Butler*1, 1University College Dublin, Belfield, Dublin, Ireland, 2Teagasc, Moorepark AGRIC, Cork, Ireland.

2:45 PM

The effects of blood composition and age on PBMC mitochondrial enzyme activity in prewean dairy calves.
A. M. Niesen* and H. A. Rossow, University of California Davis, Davis, CA.

3:00 PM

Effect of delayed colostrum feeding on plasma concentrations of glucagon-like peptide 1 and 2 in calves.
Y. Inabu*1, A. Fischer2, T. Sugino1, M. Oba2, L. L. Guan2, and M. Steele2, 1The Research Center for Animal Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan, 2Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.

3:15 PM

Systemic administration of bovine recombinant interleukin-8 induces long term insulin resistance in Holstein bull calves.
M. Zinicola* and R. Bicalho, Cornell University, Ithaca, NY.

3:30 PM

Luteolysis and concentrations of estradiol during preovulatory period in 7-day or 5-day Co-Synch with one or two doses of prostaglandin in dairy heifers.
C. Navanukraw*, V. Khanthusaeng, N. Kogram, and S. Uriyapongson, Agricultural Biotechnology Research Center for Sustainable Economy (ABRCSE), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.

3:45 PM

Differences of blood biochemical parameters among jugular, subcutaneous abdomen and coccygeal veins and between coccygeal artery and veins in dairy cows compare.
Z. H. Wei*, B. X. Zhang, X. H. Wu, and J. X. Liu, Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China.

4:00 PM

Effect of Dalmavital on pregnancy rate in CIDR-synchronized Nili-Ravi buffaloes.
A. Sattar*1, B. Munawwar1, N. Ahmad1, A. Rehman1, S. Murtaza1, M. R. Yousuf1, U. Arshad1, M. Ijaz2, and A. Riaz1, 1Department of Theriogenology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Pakistan, 2Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Pakistan.

4:15 PM

Proton-coupled oligopeptide transporter expression in bovine mammary gland epithelium and their peptide transport potential.

4:30 PM

Fetuin-A as a marker of adipose tissue function in transition dairy cows.
2:00 PM 243 Evaluation of colostrum and plasma insulin concentration around parturition and its effect on milk yield in dairy cows. M. Zinicola* and R. Bicalho, Cornell University, Ithaca, NY.

2:15 PM 244 The effect of nipple bottle vs. esophageal tube feeding of colostrum on absorption of IgG and plasma glucagon-like peptide-2 concentrations. M. Desjardins-Morrissette*, J. K. van Niekerk1, D. Haines2, T. Sugino3, M. Oba4, and M. A. Steele5, 1Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, 2The Saskatoon Colostrum Co. Ltd, Saskatoon, SK, Canada, 3The Research Center for Animal Science, Graduate School of Biosphere Science, Hiroshima University, Hijiga-Hiroshima, Hiroshima, Japan.

2:30 PM 245 Use of phytojenic feed additives in pre-weaned dairy calves. B. Miller* and P. Gott, Biomin USA, San Antonio, TX.

2:45 PM 246 Heifer calf health and management on Canadian dairy farms. C. Winder*, T. Duffield, C. Bauman, and D. Kelton, Dept. of Population Medicine, University of Guelph, Guelph, ON, Canada.

3:00 PM Break

3:15 PM 247 Cow-level responses to two commercial dry cow mastitis preparations. E. Cox*, T. Bilby1, S. Kieser1, B. Petersen2, J. Laporta3, and R. Chebel4, 1Merck Animal Health, De Soto, KS, 2Dairy Vet Services, Sunnyside, WA, 3Sunrise Veterinary Services, Dalhart, TX, 4Department of Animal Sciences, University of Florida, Gainesville, FL, 5Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL.

3:30 PM 248 Evaluating the effect of two hoof-trimming techniques on lesion incidence. G. Stoddard*, N. Cook2, S. Wagner3, and G. Cramer1, 1University of Minnesota Twin-Cities, St. Paul, MN, 2University of Wisconsin Madison, Madison, WI, 3North Dakota State University, Fargo, ND.

4:00 PM 250 Nutritional recovery strategies from severe nutrient restriction alter milk and blood parameters of dairy cows. V. Fischer*1, D. Werncke1, F. A. Schmidt2, and A. Thaler Neto3, 1Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, 2Universidade do Estado de Santa Catarina, Lages, SC, Brazil.

Ruminant Nutrition Symposium:
Ruminal Metagenomics in Dairy Cattle—Beyond Microbial Diversity
Chair: Timothy Hackmann, University of Florida
Sponsor: Innovation Center for U.S. Dairy
Room 319-320

2:00 PM 251 Colonizing microbiome influences early intestinal development in newborn dairy calves. N. Malmuthuge1,2, G. Liang1,3, and L. L. Guan*, 1Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, 2Vaccine and Infectious Disease Organization- International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada, 3Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.

2:30 PM 252 Host-rumen microbe interactions may be leveraged to improve productivity of dairy cows. D. M. Bickhart* and P. J. Weimer, USDA-ARS DFRC, Madison, WI.
Can the rumen microbiome be manipulated to enhance feed efficiency in dairy cows?
I. Mizrahι, The Department of Life Sciences & the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Break

Understanding dietary-microbe interactions to enhance the productivity of dairy cows.
D. Pitta*, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square, PA.

Leveraging next-generation sequencing technology to identify the functional role of rumen microbiome in dairy cows.
T. Snellingasan, I. Tapio9, F. Strozzi8, D. Fischer4, A. Bayat7, P. Garnsworthy3, P. Huhtanen2, P. Bani1, K. Shingfield6, and J. Wallace5, 1Natural Resources Institute Finland (Luke), Helsinki, Finland, 2Swedish University of Agricultural Sciences, Umeå, Sweden, 3University of Nottingham, Loughborough, UK, 4Università Cattolica del Sacro Cuore, Piacenza, Italy, 5University of Aberdeen, Aberdeen, UK, 6Aberystwyth University, Aberystwyth, UK, 7Enterome Bioscience, Paris, France.

Ruminant Nutrition II
Chair: Joseph McFadden, West Virginia University
Room 321

Low and high methane emitting cows hold their ranking over different feeding strategies.
A. R. Bayat*, T. Luukkanen1, P. Kairenius1, H. Leskinen1, T. Hurme2, S. Ahvenjärvi3, and J. Vilkkil4, 1Green Technology, Natural Resources Institute Finland (Luke), Jokioinen, Finland, 2Natural Resources and Bioproduction, Natural Resources Institute Finland (Luke), Jokioinen, Finland.

Effects of feeding brown midrib dwarf pearl millet silage on lactational performance and enteric methane emission in dairy cows.
M. T. Harper*, A. Melgar, G. Roth, and A. N. Hristov, The Pennsylvania State University, University Park, PA.

Assessing the potential of 3-nitrooxypropanol and canola oil alone and in combination to lower methane emissions from cattle and reduce their contribution to climate change.
M. L. Smith9, S. M. Duval2, M. Kindermann1, K. A. Beauchemin4, and L. Kung Jr1, 1University of Delaware, Newark, DE, 2DSM Nutritional Products France, Saint Louis Cedex, France, 3DSM Nutritional Products, Basel, Switzerland, 4Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.

Effect of pH and 22:6n-3 on in vitro biohydrogenation of 18:2n-6 by different ratios of Butyribrio fibrisolvens to Propionibacterium acnes.
L. Dewanckele*, B. Vlaeminck, J. Jeyanathan, and V. Fievez, Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.

Altering the ratio of dietary C16:0 and cis-9 C18:1 interacts with production level in dairy cows: Effects on production responses and energy partitioning.
J. de Souza* and A. L. Lock, Michigan State University, East Lansing, MI.

Are EPA, DPA, and DHA equally effective to modulate ruminal biohydrogenation in cows? A comparative in vitro study.
P. G. Toral9, G. Hervás1, D. Carreño1, H. Leskinen1, A. Belenguer1, K. J. Shingfield2, and P. Frutos3, 1Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain, 2Natural Resources Institute Finland (LUKE), Green Technology, Nutritional Physiology, Jokioinen, Finland, 3Institute of Biological, Environmental and Rural Sciences, Animal and Microbial Sciences, Aberystwyth University, Aberystwyth, United Kingdom.

Effects of timing of C16:0 supplementation on production and metabolic responses of early lactation dairy cows.
J. de Souza* and A. L. Lock, Michigan State University, East Lansing, MI.

Milk fat depression in dairy ewes fed marine lipids: What are the reasons behind individual variation?
P. G. Toral9, L. Rodríguez-López1, G. Hervás1, A. K. K. Salama2, G. Caja4, and P. Frutos3, 1Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, Grulleros, León, Spain, 2Grup de Recerca en Remugants (G2R), Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
Abomasal infusion with an exogenous emulsifier improves fatty acid digestibility and milk fat yield of lactating dairy cows.
J. de Souza*, M. M. Western, and A. L. Lock, Michigan State University, East Lansing, MI.

Effects of supplementation of oleic acid and stearic acid in low fat and high fat diets on milk performance of early lactation cows.
Y. T. Chen*, G. L. MA; J. H. Harrison, and E. Block, 1Washington State University, Pullman, WA, 2Washington State University, Puyallup, WA, 3Church and Dwight Animal Nutrition, Princeton, NJ.

Body temperature of corn- and wheat-fed dairy cows.

Heat stress decreases transcription of protein metabolism-related genes in mammary tissue of middle lactating cows.
D. P. Bu*, L. Ma, S. T. Gao, L. H. Baumgard, and M. Bionaz, 1State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 2Department of Animal Science, Iowa State University, Ames, IA, 3Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 4CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing, China, 5Hunan Co-Innovation, Changsha, Hunan, China.

Teaching/Undergraduate and Graduate Education I
Chair: Michel Wattiaux, University of Madison-Wisconsin
Room 328

Impact of production animal scholars program on developing production veterinarians.
E. L. Karcher* and D. Grooms, 1Purdue University, West Lafayette, IN, 2Michigan State University, East Lansing, MI.

The use of virtual farm tours in a dairy cattle management course.
E. L. Karcher* and P. Reid, Purdue University, West Lafayette, IN.

Male seniors were the lowest performing students in an introductory to dairy cattle science course.
C. G. Burgett*, J. A. Sterle, and J. M. Bundy, Iowa State University, Ames, IA.

M. A. Tomaszewski and G. R. Hagevoort*, 1Texas A&M University, College Station, TX, 2New Mexico State University, Clovis, NM.
Tuesday, June 27

POSTER PRESENTATIONS

Animal Behavior and Well-Being II

T1 Assessment of two pain management strategies following scoop dehorning in dairy calves.
A. A. Barragan*, S. Bas, and L. da Costa, *Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH.

T2 Pair housing of dairy calves in modified individual calf hutches.

T3 Veal calf health on the day of arrival to growers in Ohio.
J. Pempek*, D. Trearchis, M. Masterson, G. Habing, and K. Proudfoot, The Ohio State University, Columbus, OH.

T4 Characterizing activity at social grouping in weaned dairy calves.
K. C. Horvath* and E. K. Miller-Cushon, University of Florida, Gainesville, FL.

T5 Behavioral changes in group-housed dairy calves infected with Mannheimia haemolytica.
C. L. Hixson*, P. D. Krawczel1, J. M. Caldwell2, and E. K. Miller-Cushon1, 1University of Florida, Gainesville, FL, 2University of Tennessee, Knoxville, TN.

T6 Exploring the effect of automated milk feeding stall design on dairy calf behavior.
T. Wilson*, S. J. LeBlanc, T. J. DeVries, and D. B. Haley, University of Guelph, Guelph, ON, Canada.

T7 Feeding behavior of cows fed with oregano and green tea extracts during the transition period.
V. Fischer*1, S. C. B. Stivanin1, E. F. Vizzotto1, M. de Paris1, and M. B. Zanela1, 1Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, 2Empresa Brasileira de Pesquisa Agropecuaria, Pelotas, RS, Brazil.

T8 The effect of overstocking different resources within a freestall pen on the behavior and physiology of lactating Holstein cows.
C. B. Kesterson*, R. A. Black, N. L. Eberhart, E. M. Edwards, and P. D. Krawczel, Department of Animal Science, The University of Tennessee, Knoxville, TN.

T9 Effects of calcium salts of medium-chain fatty acid supplements on feeding behavior and milking activity in lactating dairy cows in an automatic milking system.

T10 Feeding behavior of lactating dairy cows with genomic predisposition for residual feed intake fed at two levels of dietary neutral detergent fiber.
F. Sun*1, M. Aguerre2, J. Powell1, K. Weigel1, A. Pelletier1, P. Crump1, and M. Wattiaux1, 1Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, 2Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, 3US Dairy Forage Research Center, Madison, WI, 4Department of Computing and Biometry, University of Wisconsin-Madison, Madison, WI, 5Department of Soil Science, University of Wisconsin-Madison, Madison, WI.

Animal Health II

T11 Metabolic and digestive disorders affect behavioral and productive parameters of lactating Holstein cows milked with an automatic milking system.
M. L. Stangaferro* and J. O. Giordano, Cornell University, Ithaca, NY.
T12 Evaluation of milk microbiome provides evidence for selective dry cow therapy and rational use of antimicrobial in dairy cows.
E. C. R. Bonsaglia1,2, M. S. Gomes1, I. F. Canisso1, Z. Zhou1, S. F. Lima3, V. L. M. Rall2, E. F. Garrett1, G. Oikonomou4, R. C. Bicalho3, and F. S. Lima5,6, 1University of Illinois, Urbana-Champaign, IL, 2Sao Paulo State University, Botucatu, SP, Brazil, 3Cornell University, Ithaca, NY, 4University of Liverpool, Leahurst, Neston, UK.

T13 The effect of 2,4-thiazolidinedione on lipid-soluble vitamins in lactating goats induced with subclinical mastitis.
C. Y. Tsai1*, F. Rosa2, M. Bionaz3, and P. Rezamand4, 1Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, 2Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR.

T14 Bacterial ecosystem of the bovine mammary gland: Potential role of foundation taxa in shaping mammary gland microbiota and modulating udder homeostasis.
H. Derakhshani*, J. C. Plazier1, and E. Khafipour1,2, 1Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada, 2Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.

T15 Quarter somatic cell count of culture negative and gram-negative cases of non-severe clinical mastitis enrolled in negatively controlled randomized clinical trials.
M. J. Fuenzalida* and P. L. Ruegg, University of Wisconsin, Madison, WI.

T16 Macrophage activation during subclinical mastitis in dairy goats treated with 2,4-thiazolidinedione.
F. Rosa*1,2, M. Moridi1, J. S. Osorio2, J. Lohakare3, and M. Bionaz1, 1Oregon State University, Corvallis, OR, 2South Dakota State University, Brookings, SD, 3University of Arkansas, Fayetteville, AR.

T17 Evaluation of the effects of metabolic diseases during the transition period on the culling risk of high-yielding dairy cows by survival analysis.
M. Probo1, O. Bogado Pascottini*2, S. LeBlanc2, G. Opsomer1, and M. Hostens1, 1Central Laboratory, Veterinary Teaching Hospital, University of Milan, Lodi, Italy, 2Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, 3Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

T18 Risk factors for subclinical mastitis in grazing dairy cows.
R. R. Daros*1, M. J. Hötzel1, S. J. LeBlanc2, J. A. Bran3, A. J. Thompson1, and M. A. G. von Keyserlingk1, 1Animal Welfare Program, Faculty of Land and Food systems, University of British Columbia, Vancouver, BC, Canada, 2Laboratorio de Etiologia Aplicada e Bem-Estar Animal, Departamento de Zootecnia e Desenvolvimento Rural, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil, 3Population Medicine, Ontario Veterinary College, University of Guelph, Canada, Guelph, ON, Canada.

T19 Evaluation of chlorine concentration and stability, oxidation-reduction potential (ORP), and pH in 2 chlorine based disinfectants at teat dip concentrations.
L. Timms*, Iowa State University, Ames, IA.

T20 Associations of dry-off management and somatic cell count in robotic milking systems.
F. H. Padua, M. T. M. King*, and T. J. DeVries, Dept. of Animal Biosciences, University of Guelph, Guelph, ON, Canada.

T21 Effect of minerals and vitamins supplementation during the non-lactating period on incidence of metritis in lactating dairy cows.
G. A. Mattioli1, C. G. Sarramone2, E. Turic2, M. Sain-Martín2, and A. E. Relling**, 1Fc. Cs. Veterinarias, UNLP, La Plata, Buenos Aires, Argentina, 2Biogenesis Bago, Garin, Buenos Aires, Argentina, **Department of Animal Sciences, The Ohio State University, Wooster, OH.

T22 Effect of somatic cell count around service on the fertility of grazing dairy cows.
N. Lorenti1, R. Rearte2, M. Giuliodori3, and R. de la Sota4,5, 1Práctica Privada, Brandsen, Buenos Aires, Argentina, 2Cátedra de Higiene, Epidemiología y Salud Pública, Facultad de Ciencias Veterinarias- Universidad Nacional de La Plata (FCV-UNLP), La Plata, Argentina, 3Catedra de Fisiologia, FCV-UNLP, La Plata, Argentina, 4Catedra y Servicio de Reproduccion Animal, FCV-UNLP, La Plata, Argentina, 5National de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.

T23 Assessing the validity of inline milk fat-to-protein ratio data as an indicator of subclinical ketosis in dairy cows in robotic milking herds.
I. R. Salmazo, M. T. M. King*, and T. J. DeVries, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.

T24 Can the use of cefquinome be justified to treat Streptococcus agalactiae subclinical mastitis?
R. Rossi, L. Correia, S. Guerra, A. Amarante, V. Rall, and J. Pantoja*, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil.
T25 Detection of icaA, icaD, and bap genes in strains of coagulase-negative staphylococcus antimicrobial resistant isolated from bovine mastitis.

T26 Validation of BHBCheck blood β-hydroxybutyrate meter as a diagnostic tool for hyperketonemia.
K. J. Sailer*, R. S. Pralle, R. C. Oliveira, G. R. Oetzel, and H. M. White, University of Wisconsin-Madison, Madison, WI.

T27 Liver functionality index in peripartal dairy cows fed ethyl-cellulose rumen-protected methionine is associated with better performance and immunometabolic status.
F. Batistel*, B. Saremi2, C. Parys3, E. Trevisi4, and J. J. Loor5, 1University of Illinois at Urbana-Champaign, Urbana, IL, 2Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Germany, 3Università Cattolica del Sacro Cuore, Piacenza, Italy.

T28 Prevalence of Prototheca spp. in bulk tank milk from Ohio dairy farms.
L. da Costa*, A. Della Libera2, and H. Sullivan3, 1Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 2Department of Clinical Medicine of São Paulo, São Paulo, São Paulo, Brazil, 3Eastern Laboratory Service, Medina, OH.

T29 Development and evaluation of hyperketonemia prediction models.
R. S. Pralle*, K. A. Weigel, and H. M. White, University of Wisconsin-Madison, Madison, WI.

T30 Quantifying milk leukocyte proportions in mastitic and healthy quarters.
S. Paudyal*, G. Pena2, P. Melendez2, A. Villarreal3, N. Roman-Muniz4, and P. Pinedo5, 1Colorado State University, Fort Collins, CO, 2Advanced Animal Diagnostics, Morrisville, NC, 3University of Missouri, Columbia, MO, 4Afinimilk USA, Fitchburg, WI.

T31 Advancement of Dairying in Austria (ADDA): Antimicrobial dry cow therapy on conventional dairy farms—Farmers’ management decisions.
C. L. Firth**, C. Schleicher1, A. Käsbohrer1, and W. Obrizthauzer1, 1University of Veterinary Medicine, Institute of Veterinary Public Health, Vienna, Austria, 2Austrian Agency for Health and Food Safety (AGES), Integrated Risk Assessment, Data and Statistics, Graz, Styria, Austria.

T32 Prevalence of subclinical ketosis in Chilean grazing dairy cattle calving during fall and spring.
P. Melendez*, C. Chacon2, S. Poock2, and P. Pinedo3, 1College of Veterinary Medicine, University of Missouri, Columbia, MO, 2Agricola Pozo Bruyo, Santiago, Chile, 3Department of Animal Sciences, Colorado State University, Fort Collins, CO.

T33 Nonesterified fatty acids induce proinflammatory macrophage phenotype.
G. A. Contreras* and W. Raphael, Department of Large Animal Clinical Sciences, East Lansing, MI.

T34 Efficacy and clinical safety of pegbovigrastim against naturally occurring clinical mastitis in periparturient cows on US commercial dairies.
P. C. Canning*, R. L. Hassfurter1, T. TerHune2, K. Rogers3, S. Abbott4, and D. Kolb5, 1Elanco Animal Health, Greenfield, IN, 2HMS Veterinary Development Inc., Tulare, CA, 3Veterinary Research & Consulting Services, Greeley, CO, 4Dairy Vet Management, Sunnyside, WA, 5Lodi Veterinary Hospital, Lodi, WI.

T35 Reduction of the endotoxin concentration by a clay mineral-based product in a semi-continuous in vitro rumen model.
N. Reisinger*, C. Stoiber1, C. Emsenhuber1, I. Dohnal1, S. Schaumberger2, and G. Schatzmayr1, 1Reduction of the endotoxin concentration by a clay mineral-based product in a semi-continuous in vitro rumen model.

T36 Dietary clay supplementation improves hepatic expression of inflammatory markers in Holstein cows challenged with aflatoxin.
K. Ryan*, S. Sulzberger1, M. Vailati-Riboni1, L. Guifen2, Y. Khidoyatov2, J. Loor3, and F. Cardoso4, 1University of Illinois, Department of Animal Sciences, Urbana, IL, 2Institute of Animal Science and Veterinary Medicine, Shangdong Academy of Agricultural Sciences, Jinan, China, 3United Minerals Group, Kiev, Ukraine.

T37 Investigation of toxin genes in strains of Staphylococcus spp. antimicrobial resistant isolated from bovine mastitis.

T38 Advancement of Dairying in Austria (ADDA): Preliminary results of an observational study into antimicrobial use on dairy farms in Austria, Europe.
C. L. Firth*, A. Käsbohrer1, C. Egger-Danner2, K. Fuchs3, and W. Obrizthauzer1, 1University of Veterinary Medicine, Institute of Veterinary Public Health, Vienna, Austria, 2Zuchtdaten EDV-Dienstleistungen GmbH, Vienna, Austria, 3Austrian Agency for Health and Food Safety (AGES), Integrated Risk Assessment, Data and Statistics, Graz, Styria, Austria.
Explaining farmers’ adaptation of preventive measures against mastitis—An application of Theory of Planned Behavior.
N. Lind*1, H. Hansson1, U. Emanuelsson2, and C.-J. Lagerkvist1, 1Department of Economics, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.

Integration of phenotypic and transcriptomic data shows differences of metabolic response upon energy shortage in relation with genetic resistance to mastitis.
J. Bouvier-Müller*1,2, G. Foucras2, and R. Rupp1, 1INRA GenPhySE, Castanet-Tolosan, France, 2Université de Toulouse IHPA INRA ENVT, Toulouse, France.

Impact of culling for SCC, milk revenue, and estimated breeding values on herd performance.
K. Kaniyamattam*1, A. De Vries1, L. W. Tauer2, and Y. T. Grohn1, 1Section of Epidemiology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 2Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY, 3Department of Animal Sciences, University of Florida, Gainesville, FL.

Cow-level risk factors for clinical and subclinical mastitis in New York dairy cattle.
A. M. Miles*, J. A. A. McArt, P. D. Virkler, and H. J. Huson, Cornell University, Ithaca, NY.

Effects of feeding an extruded flaxseed supplement on fatty acids in milk and plasma and immune function in transition dairy cows.
M. Fetter*1,2, J. Pate1,2, K. Harvatine1, J. Moats3, and T. Ott1,2, 1Department of Animal Science, Pennsylvania State University, 2Center for Reproductive Biology and Health, Pennsylvania State University, 3O&T Farms, Regina, SK, Canada.

Polymorphism in the β-casein gene in Zebu dairy cattle.
A. H. N. Rangel*1,1, L. G. Zaros1, M. S. Silva2, D. M. Lima Júnior3, J. G. B. Galvao Jr4, and S. A. Urbano1, 1Universidade Federal do Rio Grande do Norte, Macaíba, RN, Brazil, 2Programa de Doutorado Integrado em Zootecnia, Universidade Federal do Ceará, Fortaleza, CE, Brazil, 3Universidade Federal de Alagoas, Arapiraca, AL, Brazil, 4Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, Ipanguaçu, RN, Brazil.

Bull fertility evaluations for Angus service sires bred to Holstein cows.
J. L. Hutchison*1, P. M. VanRaden1, J. B. Cole2, G. C. Fok2, and H. D. Norman3, 1Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, 2Council on Dairy Cattle Breeding, Bowie, MD.

Genetic and genomic analysis for oocyte number and embryo production traits in Holstein cattle using in vitro fertilization data.
C. Sun*, D. Kendall, C. Heuer, J. Deeb, R. Vishwanath, M. Fosado, and J. Moreno, ST Genetics, Navasota, TX.

Accounting for potential bias due to the pre-selection of cows for hoof trimming using a multiple trait evaluation.
F. Malchiodi*1, F. S. Schenkel1, A-M. Christen2, D. F. Kelton1, and F. Miglior1,4, 1Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada, 2Valacta, Sainte-Anne-De-Bellevue, QC, Canada, 3Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, 4Canadian Dairy Network, Guelph, ON, Canada.

Genomic prediction of lactation curves for milk, fat, protein, and somatic cell score in Canadian Jersey cattle.
H. R. Oliveira*1,2, L. F. Brito1, J. Jamrozik1,3, F. F. Silva2, and F. S. Schenkel1, 1University of Guelph, Guelph, ON, Canada, 2Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil, 3Canadian Dairy Network, Guelph, ON, Canada.

Identifying, analyzing, and comparing runs of homozygosity in Canadian dairy populations using next-generation sequencing data.
C. Vogelzang*1, F. Miglior1,2, N. Melzer1, M. Sargolzaei1,4, C. Maltecca1, B. Makanjuola1, A. Fleming1, F. Schenkel1, and C. Baes1, 1CGIL, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, 2Canadian Dairy Network, Guelph, ON, Canada, 3Leibniz Institute for Farm Animal Biology, Institute of Genetics and Biometry, Dummerstorf, Germany, 4Semex Alliance, Guelph, ON, Canada.

Understanding functional severity of deleterious runs of homozygosity in Holstein cattle.
B. Makanjuola1, F. Miglior1,2, N. Melzer1, A. Fleming1, F. Schenkel1, M. Sargolzaei1,4, and C. Baes1, 1Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, 2Canadian Dairy Network, Guelph, ON, Canada, 3Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany, 4Semex Alliance, Guelph, ON, Canada.
Dairy Foods IV

United States funded international development of dairy product capabilities in smallholder plants in Lebanon.
T. Schoenfuss1 and G. Hanson1, 1University of Minnesota, St. Paul, MN, 2Land O’Lakes, Arden Hills, MN.

Impact of milk hauling practices on microbiological quality.
E. Kuhn*, L. Goddik, and J. Waite-Cusic, Oregon State University

Influence of somatic cell count on sensorial acceptance of bovine milk and cheese in the semi-arid region of Brazil.
E. R. Lima1, M. F. Bezerra1, J. G. B. Galvao Jr.2, S. A. Urban2, and A. H. N. Rangel1, 1Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, 2Canadian Dairy Network, Guelph, ON, Canada

Prevalence of sporeformers in raw milk in Nebraska: A year in perspective.
B. Martinez, R. Crespo*, J. Stratton, and A. Bianchini, University of Nebraska-Lincoln, Lincoln, NE.

Population dynamics of a common dairy sporeformer, Bacillus licheniformis, in spiked raw milk samples stored at low temperatures.
N. Awasti1,2, R. Suliman3, S. Anand1,2, and G. Djira1, 1Midwest Dairy Food Research Center, Brookings, SD, 2Department of Dairy and Food Science, South Dakota State University, Brookings, SD, 3Department of Mathematics and Statistics, South Dakota State University, Brookings, SD.

The role of Bacillus cereus and their enzymes in gelation of UHT milk.
R. S. Obaid1, K. Qadoura2, and M. M. Ayyash3, 1University of Sharjah, Sharjah, United Arab Emirates, 2Jordan Food and Drug Administration, Amman, Jordan, 3United Arab Emirates University, Al Ain, United Arab Emirates.

New insights into post-pasteurization contamination of fluid milk—Detection, effects, and environmental persistence.
S. Reichler1, A. Alles1, A. Trmcic2, N. Martin1, K. Boor1, and M. Wiedmann3, 1Cornell University, Ithaca, NY, 2University of British Columbia, Vancouver, BC, Canada.

Effect of lutein and antioxidant feed supplementation on milk quality and lutein content under different heat processes and storage times.
D. Ren1, C. Wang2, Z. Wei2, J. Liu1, and Z. Duan3, 1Institute of Dairy Science, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China, 2College of Animal Science and Technology, Zhejiang A & F University, Lin’an, Zhejiang, China, 3Kemin Industries (Zhuhai) Co. Ltd, Zhuhai, Guangdong, China.

Impact of processing on in vitro digestion of milk from grazing organic and confined conventional herds.
D. L. Van Hekken1, M. H. Tuncik1, D. X. Ren2, and P. M. Tomasula3, 1USDA, ARS, DFFRU, Wyndmoor, PA, 2Zhejiang University, Hangzhou, China.

Effect of high-pressure jet processing on casein-fat interaction.
M. Tran* and F. M. Harte, The Pennsylvania State University, State College, PA.
Quantitative analysis of *Lactobacillus rhamnosus* GR-1 in fermented probiotic milk products over refrigerated storage.
S. Hekmat*, M. Soltani, and L. Ahmadi, Brescia University College at Western University, London, ON, Canada.

The role of heat treatment, fat content, and storage time on mechanical and sensory behaviors of fluid milk.
H. S. Joyner (Melito)*1, Y. Li1, B. G. Carter2, and M. A. Drake3, 1School of Food Science, University of Idaho, Moscow, ID, 2Department of Food Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, NC.

Detection of microorganisms responsible for a musty off-odor in nonfat chocolate milk.
D. Batty*, E. Kuhn, L. Goddik, and J. Waite-Cusie, Oregon State University, Corvallis, OR.

Rheological and tribological characterization of saliva interaction with acid milk gels.
M. Baniasadidehkordi* and H. S. Joyner (Melito), University of Idaho, Moscow, ID.

Preparation of polymerized whey protein directly from cheese whey and its application as a gelation agent for yogurt making.
T. Fang1, X. Shen1, J. Zheng1, Y. Wang1, and M. Guo*1, 1Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China, 2Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT.

Chemical, physiochemical and microstructural properties, and probiotic survivability of goat milk kefir using polymerized whey protein as co-thickening agent.
H. Wang1, C. Wang1, M. Wang1, X. Zhou1, and M. Guo*1, 1Jilin University, Changchun, Jilin, China, 2University of Vermont, Burlington, VT.

Oxidative stability of Iranian ghee (butter oil) and soybean oil: A comparative study.
M. Enteshari*1, 1, K. Nayebzadeh1, 2, S. Martínez-Monteagudo2, 1Faculty of Nutrition and Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 2Dairy and Food Science Department, South Dakota State University, Brookings, SD.

Trans-isomers in cultured butter under the cream fermentation of Flora Danica in combination with *Lactobacillus acidophilus* La-5 at different temperatures.
O. Tsisaryk*, L. Musiy, and I. Slyvka, Lviv National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine.

Dairy Foods V:

Cheese

Impact of membrane selectivity on the cheesemaking properties of skim milk concentrates.
A. Lauzin*1, I. Dussault-Chouinard1, M. Britten1, and Y. Pouliot1, 1STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Department of Food Science, Université Laval, Québec, QC, Canada, 2Food Research and Development Center (FDRC), Agriculture and Agri-Food Canada, St-Hyacinthe, QC, Canada.

Impact of membrane selectivity on the compositional characteristics of liquid pre-cheese concentrates.
A. Lauzin*, M. Britten1, and Y. Pouliot1, 1STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Department of Food Science, Université Laval, Québec, QC, Canada, 2Food Research and Development Center (FDRC), Agriculture and Agri-Food Canada, St-Hyacinthe, QC, Canada.

On the use of polymeric microfiltration membranes for the preparation of liquid pre-cheese: Impact on process efficiency.
D. Mercier-Bouchard1, I. Dussault-Chouinard*, 1, S. Benoit1, A. Doyen1, M. Britten1, and Y. Pouliot1, 1STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Department of Food Science, Université Laval, Québec, QC, Canada, 2Food Research and Development Center (FDRC), Agriculture and Agri-Food Canada, St-Hyacinthe, QC, Canada.

Milk fatty acid composition and long-seasoning cheese-making qualities of milk from dairy cows given algae in pelleted or meal concentrate form.
M. Morlacchini1, F. Giorgio1, C. Moran1, D. Graugnard*1, and K. Jacques1, 1CERZOO, Piacenza, Italy, 2Alltech Inc., Nicholasville, KY.
T76 **Multivariate analysis in the study of association between Mozzarella cheese yield and processing factors.**
D. C. Sales¹, A. H. N. Rangel¹, A. R. Freitas², J. G. B. Galvão Jr.², S. A. Urbano¹, E. P. E. Silva¹, and H. Tonhati³, ¹Universidade Federal do Rio Grande do Norte, Macaíba, RN, Brazil, ²Instituto Federal do Educação. Ciencia e Tecnologia do Rio Grande do Norte, Ipanucaçu, RN, Brazil, ³Empresa Brasileira de Pesquisa Agropecuaria (Retired), Sao Paulo, SP, Brazil, ⁴Universidade Estadual Paulista Julio de Mesquita Filho, Jardicidal, SA, Brazil.

T77 **Tuning meltability and stretchability of pizza cheese using modified starch.**

T78 **Utilization of konjac glucomannan as a fat replacer in low-fat and skinned Mozzarella cheese.**
S. Dai*, H. Corke¹, and N. P. Shah¹, ¹Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China, ²Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China.

T79 **Behavior of starches with different amylose content in mixtures with casein for replacing fat in cheese.**
V. R. Diamantino, M. S. Costa, C. M. L. Franco, and A. L. B. Penna*, São Paulo State University, São José do Rio Preto, SP, Brazil.

T80 **Physiochemical and texture analysis of camembert cheese variants.**
D. Batty*, J. Waite-Cusic, and L. Goddik, Oregon State University, Corvallis, OR.

T81 **Compositional and proteolytic study of Danish Blue cheese during ripening.**
A. Mane*, F. Ciocia², T. K. Beck³, S. Lilleberg³, and P. McSweeney², ¹Food for Health Ireland, Dublin, Ireland, ²University College Cork, Cork, Ireland, ³Arla Foods, Vojens, Denmark.

T82 Withdrawn

T83 **Quantification of starch through an enzymatic starch assay to quantify flow aid concentrations in shredded cheeses.**
A. Zumbusch and T. Schoenfuss*, University of Minnesota, St. Paul, MN.

Dairy Foods VI:

Dairy Ingredients

T84 **Comparative environmental impact analysis of distilled whey spirit and white whiskey production.**
D. Risner, A. Shayevitz, L. Goddik*, and P. Hughes, Oregon State University, Corvallis, OR.

T85 **Utilizing acid whey in the beer brewing process.**
M. R. Lawton* and S. D. Alcaine, Cornell University, Ithaca, NY.

T86 **Production of whey protein-maltodextrin conjugates at a pilot plant scale.**
Y. Lu*, V. Gong¹, S. Kana¹, M. Molitor¹, and J. Lucey¹, ¹Center for Dairy Research, University of Wisconsin-Madison, Madison, WI, ²Department of Food Science, University of Wisconsin-Madison, Madison, WI.

T87 **Mycobiota and natural incidence of aflatoxin M1 in milk based dietary supplements.**
B. Pereira¹, V. Farias¹, L. Luquez³, E. Rodrigues³, R. Franco¹, and L. Keller*, ¹Universidade Federal Fluminense, Niterói, RJ, Brazil, ²CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasilia, DF, Brazil, ³PESAGRO, Empresa de Pesquisa Agropecuaria do Estado do Rio de Janeiro, Niterói, RJ, Brazil.

T88 **Low temperature forward osmosis concentration of skim milk: Process efficiency and product quality.**
K. Kriner* and C. I. Moraru, Cornell University, Ithaca, NY.

T89 Withdrawn

T90 **Edible electrosprun nanofibers from caseinate and pullulan blends.**
S. Akkurt*, K. L. Yam¹, L. Liu², R. Kwoczak², and P. M. Tomasula², ¹Food Science Department, Rutgers University, New Brunswick, NJ, ²Dairy & Functional Foods Research Unit Department of Agriculture, Agricultural Research Unit Service, Eastern Regional Research Center, Wyndmoor, PA.
Delactosed milk powder: Determination of the optimal drying parameters.
T. L. Fialho1, E. Martins1, A. C. P. Silva e Silva2, C. R. J. Silva2, I. T. Perrone1, P. Schuck3, and A. F. Carvalho*1, 1Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil, 2GEA, Campinas, São Paulo, Brazil, 3Institut National de la Recherche Agronomique, Rennes, Bretagne, France.

The physical and chemical effect of thermal processing on high- and low-heat nonfat dry milk set yogurt.
S. Brooks*, Kansas State University, Manhattan, KS.

Preliminary studies on heat stability of high protein dairy beverages containing modified milk protein concentrate.
K. Pandalaneni*,1 J. Amamcharla1, C. Marella1, and L. Metzger1, 1Kansas State University, Manhattan, Kansas, 2Midwest Dairy Foods Research Center, Brookings, South Dakota.

Development of the method for the determination of the undenatured whey proteins in milk powder products.
Z. Zhao*, Z. Gaygadzhiev2, and M. Corredig1,2, 1University of Guelph, Guelph, ON, Canada, 2Gay Lea Foods, Guelph, ON, Canada.

Effect of sonication on viscosity of reconstituted SMP and MPC as influenced by solids content.
V. Deshpande* and M. Walsh, Utah State University, Logan, UT.

Determination of the appropriate emulsion formulation for microencapsulated milk fat powder production.
A. B. Himmetagaoglu1, Z. Erbay*,2 and M. Cam3, 1Department of Gastronomy and Culinary Arts, Faculty of Tourism, Alanya Hamdullah Emin Pasa University, Antalya, Turkey, 2Department of Food Engineering, Faculty of Engineering and Natural Sciences, Adana Science and Technology University, Adana, Turkey, 3Department of Food Engineering, Faculty of Engineering, Erciyes University, Kayseri, Turkey.

Food Safety

Iodine-127 levels in bulk milk on Ontario dairy farms and its association with groundwater, milking management, and other risk factors.
C. M. Rogerson*,1, D. F. Kelton1, V. R. Osborne2, J. Levison3, and S. M. Hamilton4, 1Department of Population Medicine, University of Guelph, Guelph, ON, Canada, 2Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, 3School of Engineering, University of Guelph, Guelph, ON, Canada, 4Earth Resources and Geoscience Mapping Section, Ontario Geological Survey, Sudbury, ON, Canada.

Mycocflora and occurrence of fumonisins in complete mixed rations from dairy farms in São Paulo, Brazil.
J. E. P. Braga1, A. Bosso1, A. F. Rosa1, R. Braghini2, and C. R. Pozzi*, 1Instituto de Zootecnia, Nova Odessa, São Paulo, Brazil, 2Instituto de Ciências Biomédicas, São Paulo, São Paulo, Brazil.

Reduction of Listeria monocytogenes in Queso Fresco by combination of phage endolysin PlyP100 and nisin.
L. A. Ibarra-Sanchez*, M. Van Tassell, and M. Miller, University of Illinois at Urbana-Champaign, Champaign, IL.

Survival and growth of Listeria monocytogenes in a model cheese based on pH, moisture, and acid type.
S. K. Engstrom* and K. A. Glass, University of Wisconsin-Madison, Madison, WI.

Forages and Pastures II

Establishment and production of ryegrass and clover in two Colombian highland regions.
J. Vargas, A. M. Sierra, Y. Avellaneda, O. L. Mayorga, and C. Ariza-Nieto*, CORPOICA, Bogota, Colombia.

Growth dynamic and chemical composition of kikuyu (Cenchrus clandestinum) in Colombian highland dairy systems.
E. Mancipe, C. Ariza-Nieto*, O. L. Mayorga, and Y. Avellaneda, CORPOICA, Bogota, Colombia.
T103 Effectiveness of a chemical additive on improving the aerobic stability of air-stressed high-moisture corn submitted to aerobic spoilage at room and warm temperatures.
E. Benjamim da Silva*1, R. M. Savage1, S. A. Polukis1, M. L. Smith1, A. M. Gray1, K. M. Pacer1, and L. Kung Jr.1, 2University of Delaware, Newark, DE, 2CAPES Foundation, Brasilia, DF, Brazil.

T104 Effectiveness of a chemical additive on improving the aerobic stability of corn silage after short periods of ensiling.
E. Benjamim da Silva*1, R. M. Savage1, S. A. Polukis1, M. L. Smith1, A. M. Gray1, R. N. Mester2, and L. Kung Jr.1, 3University of Delaware, Newark, DE, 2CAPES Foundation, Brasilia, DF, Brazil.

T105 Sensory additive effects on leucocyte and metabolic profile of grazing dairy cows.
L. M. Gómez1, P. Aguirre1, F. Bargo*1,3, G. Tedd1, and I. Ipharraguerre1, 4Solla, Medellín, Colombia, 5Lucta SA, Barcelona, Spain, 6Universidad Buenos Aires, Buenos Aires, Argentina, 7University of Kiel, Kiel, Germany.

T106 Effect of a homolactic inoculant alone and in combination with a heterolactic inoculant on the fermentation and aerobic stability of high-moisture corn.
M. L. Smith*1, R. M. Savage1, E. Benjamim da Silva1, S. A. Polukis1, S. J. Dietz2, K. M. Pacer1, T. P. Karnezos2, and L. Kung Jr.1, 1University of Delaware, Newark, DE, 2PMI Nutritional Additives, Shoreview, MN, 3University of Delaware, Newark, DE, 4PMI Nutritional Additives, Shoreview, MN.

T107 Effect of a homolactic inoculant alone and in combination with a heterolactic inoculant on the fermentation and aerobic stability of snaplage.
M. L. Smith*1, R. M. Savage1, E. Benjamim da Silva1, S. A. Polukis1, S. J. Dietz2, M. B. Palillo1, T. P. Karnezos2, and L. Kung Jr.1, 1University of Delaware, Newark, DE, 2PMI Nutritional Additives, Shoreview, MN, 3University of Delaware, Newark, DE, 4PMI Nutritional Additives, Shoreview, MN.

T108 Accuracy and precision of forage analysis by commercial laboratories.
J. Severe* and A. J. Young, Utah State University, Logan, UT.

K. Ishida*1, K. W. Cotanch2, and R. J. Grant3, 1ZEN-NOH National Federation of Agricultural Cooperative Associations, Tokyo, Japan, 2William H. Miner Agricultural Research Institute, Chazy, NY.

T110 Carbon footprint of dairy production systems in Québec: Barley versus corn silage.
J. Guyader1, S. Little1, R. Kröbel1, C. Bencharda1, and K. A. Beauchemin1, 1Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada, 2Scherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.

T111 Effect of seed variety and cutting date on nutritive values and in vitro digestibility of teff grass.
B. Saylor*, B. Bradford, and D. Min, Kansas State University, Manhattan, KS.

T112 Effect of homofermentative bacteria and cellulase addition to sugarcane at ensiling on silage chemical composition.

T113 Cell wall composition between and within phytomers of corn plants.
A. N. Brown*, G. Ferreira, W. A. Thomason, and B. A. Corl, Virginia Polytechnic Institute and State University, Blacksburg, VA.

T114 Yield and nutritive value of binary legume-grass mixtures under grazing or frequent cutting.
G. F. Tremblay1, G. Bélinger1, Y. A. Papadopoulos1, J. Duynisveld2, J. Lajeunesse1, C. Lafrenière1, and S. A. E. Fillmore2, 1Agriculture and Agri-Food Canada, Quebec Research and Development Centre, Québec City, QC, Canada, 2Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS, Canada.

T115 The effects of Lactobacillus buchneri and various air stresses on the fermentation and aerobic stability of corn silage.

T116 The impact of storage strategy and time on the quality and dry matter loss of wet distillers grains.

T117 Chemical composition and in vitro degradation kinetics of saboya grass (Panicum maximum Jacq.) silage with inclusion of tropical fruits by-products.
I. Espinoa*, L. Montenegro, M. Medina, G. Quintana, A. Sanchez, L. Espinosa, M. Medina, and M. Romero, Universidad Técnica Estatal de Quevedo, Quevedo, Los Ríos, Ecuador.
Growth and Development II

Effect of feeding milk replacer at a moderate rate, ad libitum, or with a step-up program on calf performance through 4 months of age.
F. X. Suarez-Mena*, T. S. Dennis, T. M. Hill, W. Hu, J. D. Quigley, and R. L. Schlotterbeck, Provin-Na, Brookville, OH.

Effect of feeding milk replacer at moderate rates with and without Neo-Terramycin and at high rates on calf performance and digestion immediately post-weaning.
F. X. Suarez-Mena*, T. S. Dennis, T. M. Hill, W. Hu, J. D. Quigley, and R. L. Schlotterbeck, Provin-Na, Brookville, OH.

Changes in digestion in calves fed different amounts of milk replacer and starters of different starch concentrations.

Estimates of metabolizable energy of dry feed in calves fed two types of starters and two levels of milk replacer.

Performance of calves fed milk replacer or whole milk and traditional starter or an alternative concentrate feeding program.
F. L. M. Silva*, S. J. Bertics*, E. B. Alves2, D. M. Donnelly2, J. R. R. Dórea3, C. M. M. Bittar3, and D. K. Combs3, 1University of Sao Paulo, Piracicaba, SP, Brazil, 2Federal University of Lavras, Lavras, MG, Brazil, 3University of Wisconsin, Madison, WI.

Effect of diet energy level and genomic residual feed intake on pre-bred dairy heifer feed intake and growth.
K. Williams1, K. T. Williams1, H. Su1, W. K. Coble1, N. M. Esser4, P. C. Hoffman1, 1University of Wisconsin-Madison, Madison, WI, 2China Agricultural University, Beijing, China, 3USDA Dairy Forage Research Center, Marshfield, WI, 4Marshfield Agricultural Research Station, Marshfield, WI, 5Vita Plus Corporation, Madison, WI.

Effect of limit feeding and genomic residual feed intake on dairy heifer growth and feed efficiency.
M. S. Akins*, K. T. Williams1, H. Su1, W. K. Coble1, N. M. Esser4, P. C. Hoffman1, 1Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, 2China Agricultural University, Beijing, China, 3USDA Dairy Forage Research Center, Marshfield, WI, 4Marshfield Agricultural Research Station, University of Wisconsin, Marshfield, WI, 5Vita Plus Corporation, Madison, WI.

Evaluation of a nutrition model for calves raised under tropical conditions using individual animal data.
V. L. Souza1, C. M. M. Bittar1, J. K. Drackley1, R. Almeida1, and D. P. D. Lanna1, 1Esalq/USP, Piracicaba, SP, Brazil, 2University of Illinois, Urbana, IL, 3Universidade Federal do Parana, Curitiba, PR, Brazil.
T129 Monthly body weight change in wild type and slick haired post-weaned Puerto Rican Holstein heifers.
University of Puerto Rico at Mayaguez Campus, Mayaguez, PR.
ISA University, Santiago, Dominican Republic.
Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS.

T130 Effect of functional additives on the rumen development in the dairy calf.

T131 Effects of meloxicam administration on nitrogen metabolism and growth performance in transported Jersey calves.
G. Chibiza*, J. Vinary, and A. Laarman, University of Idaho, Moscow, ID.

T132 Variation of nutrient content and bacteria count of pasteurized waste milk fed to dairy calves.
Land O'Lakes, Inc., Gray Summit, MO.

Lactation Biology II

T133 Transcriptional changes in the early lactation mammary gland involved immune signaling pathways but were not affected by NSAID treatment.
Kansas State University, Manhattan, KS.
University of Guelph, Ridgetown, ON, Canada.
Virginia Tech, Blacksburg, VA.
University of California, Davis, CA.

T134 Peroxisome proliferator-activated receptor gamma (PPARgamma) agonist does not overcome the effect of trans-10,cis-12 conjugated linoleic acid (CL) but stimulate lipidogenic gene expression in mammary explants cultured in vitro.
W. B. Junior, P. C. Carraro, E. D. Silva, and D. E. Oliveira*, Santa Catarina State University, Lages, SC, Brazil.

T135 Effects of feed restriction on synthetic capacity of the bovine mammary gland.
D. J. Seymour*, J. J. M. Kim, J. Doelman, and J. P. Cant.
Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.
Nutreco Nederland BV, Boxmeer, the Netherlands.

T136 Comparison of metabolites and hormones involved in the control of energy partitioning during the lactation of dairy ewes and goats.
University of Sassari, Sassari, Italy.
University of Udine, Udine, Italy.
Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy.
Dipartimento di Ricerca nelle Produzioni Animali, Agris, Olmedo, Italy.

T137 Effects of extracellular Zn and G protein-coupled receptor 39 silencing on immortalized bovine mammary epithelial (MAC-T) cells.
J. E. Shaffer, L. K. Mamedova*, and B. J. Bradford, Kansas State University, Manhattan, KS.

T138 The bovine milk microbiome and somatic cell count.
University of Idaho, Moscow, ID.
Purdue University, West Lafayette, IN.
Boise State University, Boise, ID.

T139 Effects of supplementary folic acid and vitamin B12 feed-restriction on immune cell functions and blood cell population in dairy cows.
N. Vanacker*, C. Girard, M. Duplessis, and P. Lacasse, Agriculture and Agri-Food Canada, Sherbrooke Research and Development Center, Sherbrooke, QC, Canada.

T297 Differential effects of lipopolysaccharide on expression of major milk protein genes in mouse mammary epithelial cells.
Q. Tian*, A. Spitzer, and F.-Q. Zhao, Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT.
Milk Protein and Enzymes

T140 Surface properties of fat globules and proteomic analysis of MFGM during temperature processing of milk.
J. Ortega-Anaya* and R. Jiménez-Flores, The Ohio State University, Columbus, OH.

T141 The effect of emulsifying salts in binary combinations on the structure of casein micelles at varying pH, temperature, time and concentration.
M. Culler, T. Thomas, M. Zaffuto*, A. Peleschak, and F. Harte, Pennsylvania State University, University Park, PA.

T296 Period2 gene silencing increases the synthesis of casein protein in bovine mammary epithelial cells.
L. Y. Hu1, Y. J. Jing1, M. Z. Wang2, Q. Y. Xu2, J. L. Ouyang1, and J. J. Loor*, 1College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China, 2Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL.

T298 Effects of milk-flavoring constituents on the fluorometric assay of bovine alkaline phosphatase.
E. M. Brock and Z. Ustunol*, Michigan State University, East Lansing, MI.

Physiology and Endocrinology II

T142 Changes in duodenal protein expression in dairy calves at birth and 48 hours of age.
S. L. Gelsinger**1 and A. J. Heinrichs1, 1The University of Wisconsin-Madison, Madison, WI, 2The Pennsylvania State University, University Park, PA.

T143 Reproductive management strategies for first service in replacement dairy heifers.
M. Masello*, M. M. Perez1, G. E. Granados1, M. L. Stangaferro1, B. Ceglowski2, M. J. Thomas2, and J. O. Giordano1, Cornell University, Ithaca, NY, 2Dairy Health & Management Services, Lovellville, NY.

T144 Response of patatin-like phospholipase domain-containing protein 3 abundance to fatty acid treatment in bovine primary hepatocytes.
H. T. Holdorf*, R. S. Pralle, M. T. Lavaria, Q. Zhang, T. L. Chandler, and H. M. White, University of Wisconsin-Madison, Madison, WI.

T145 Influence of adipocyte size and adipose depot on the expression of adipokines in dairy cows at the end of pregnancy.
J. De Koster**, M. Van Poucke1, M. Hostens1, K. Hermans1, W. Van den Broeck1, L. Peelman1, and G. Opsomer1, 1Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, 2Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium, 3Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium, 4Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium.

T146 mRNA expression of DNA methyltransferase 1 and 3a in adipose tissue of lactating and non-lactating dairy cows.

T147 Effects of fatty acid supplementation on oxidative status of red blood cells in dairy cows fed a ration with low n-3 fatty acid content.
D. Revskij1, D. Dipasquale1, U. Bernabucci1, S. Haubold1, C. Kröger-Koch1, A. Tuchscherer1, A. Tröscher1, H. J. Schuberth1, H. Hammon1, and M. Mielenz**1, 1Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany, 2Department of Agriculture and Forestry Sciences, University of Tuscia, Viterbo, Italy, 3BASF SE, Limburgerhof, Germany, 4Immunology Unit, University of Veterinary Medicine, Hannover, Germany.

T148 Fatty acid composition of red blood cell membranes of dairy cows fed a diet with low n-3 fatty acid content and effects of fatty acid supplementation.
D. Revskij1, S. Haubold1, C. Kröger-Koch1, H. Kienberger1, M. Rychlik1, A. Tuchscherer1, A. Tröscher1, H. J. Schuberth1, H. M. Hammon1, and M. Mielenz**1, 1Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany, 2Bayern Biomolecular Mass Spectrometry Center, Technical University of Munich, Freising, Germany, 3Analytical Food Chemistry, Technical University of Munich, Freising, Germany, 4BASF SE, Limburgerhof, Germany, 4Immunology Unit, University of Veterinary Medicine, Hannover, Germany.
Sorbitic acid is rapidly absorbed but does not affect plasma leptin and adiponectin concentrations in milk-fed calves.
M. Mielenz*, S. Görs1, A. Tuchscherer, H. Sauerwein, and J. J. G. C. van den Borne, 1Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany, 2Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany, 3Wageningen University, Animal Nutrition Group, Wageningen, the Netherlands.

Markers of mineral metabolism in non-lactating, non-pregnant Holstein cows fed DCAD rations with low, medium, or high concentrations of calcium and challenged with hypocalcemia.

Identification of metabolic differences in dairy cows consuming corn stover and rice straw through liver metabolomics and transcriptomics.
H. Sun, L. Liu, D. Wang, L. L. Guan, and J. Liu, 1Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China, 2Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada.

Expression of IgG receptor and tight junction protein in neonatal calf intestine.
S. L. Gelsinger**, L. L. Hernandez, and A. J. Heinrichs, 1The University of Wisconsin-Madison, Madison, WI, 2The Pennsylvania State University, University Park, PA.

Effect of one versus two prostaglandin F2α injections on progesterone concentrations and luteolysis in dairy cows subjected to a 5-d CIDR-Cosynch.
J. Spencer**, K. Carnahan, W. Price, B. Shafii, and A. Ahmadzadeh, 1Animal and Vet. Sci., University of Idaho, Moscow, ID, 2Statistical Program, University of Idaho, Moscow, ID.

Delaying administration of prostaglandin F2α by 24 hours during a Double-Ovsynch protocol decreased fertility of lactating Holstein cows to timed artificial insemination.
A. M. Niles*, A. E. Jones, P. D. Carvalho, and P. M. Fricke, Department of Dairy Science, University of Wisconsin-Madison, Madison, WI.

A higher plane of nutrition in pre-weaned Holstein heifer calves alters transcriptome profiles in mammary parenchyma and fat pad.
S. Zhan**, L. J. Geiger, J. C. McCann, M. Vailati-Riboni, R. M. Akers, and J. J. Loor, 1University of Illinois, Urbana-Champaign, Urbana, IL, 2Sichuan Agricultural University, Chengdu, Sichuan, China, 3Virginia Polytechnic Institute and State University, Blacksburg, VA.

Impact of higher plane of nutrition and post-weaning exogenous estrogen on transcriptome profiles in mammary parenchyma and fat pad of Holstein heifer calves.
S. Zhan**, L. J. Geiger, J. C. McCann, M. Vailati-Riboni, R. M. Akers, and J. J. Loor, 1University of Illinois, Urbana-Champaign, Urbana, IL, 2Sichuan Agricultural University, Chengdu, Sichuan, China, 3Virginia Polytechnic Institute and State University, Blacksburg, VA.

Perinatal effects of feeding rumen-protected methyl donors to dams on hepatic gene expression in Holstein calves.
C. Bespalhok Jacometo, P. Montagner, Z. Zhou, F. Lopes, D. Luchini, M. Nunes Corrêa, and J. Loor, 1Universidad de La Salle, Bogotá, DC, Colombia, 2Universidade Federal de Pelotas, Pelotas, RS, Brasil, 3University of Illinois, Urbana, IL, 4Adisseo SA, São Paulo, SP, Brazil, 5Adisseo NA, Alpharetta, GA.

Short-term feeding of a rumen-protected carbohydrate increases plasma insulin concentrations in early postpartum dairy cows.

Relationship between liver functionality index and fertility in dairy cows.

Effect of calcium salts of medium-chain fatty acids on performance and plasma hormone concentrations in lactating dairy cows.
S. Ishimaru**, T. Hasunuma, K. Kawashima, T. Yamaguchi, S. Asakuma, S. Kushibiki, T. Obitsu, and S. Sugino, 1Research Center for Animal Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan, 2Toyama Prefectural Agricultural, Forestry &Fisheries Research Center, Toyama, Japan, 3Chiba Prefectural Livestock Research Center, Chiba, Japan, 4Hokkaido Agricultural Research Center, Sapporo, Hokkaido, Japan, 5National Institute of Livestock and Grassland Science, Ibaraki, Japan.
The effect of body condition score and lipolysis intensity on the biosynthesis of oxylipids in periparturient dairy cows.
G. A. Contreras*1, C. Strieder Barboza1, J. de Souza2, J. Gandy1, A. L. Lock2, and L. M. Sordillo1, 1Department of Large Animal Clinical Sciences, East Lansing, MI, 2Department of Animal Science, East Lansing, MI.

pH from mammary gland secretions is acidic at the time of parturition in mares.
I. F. Canisso, F. S. Lima*, R. E. Ellerbrock, and G. Amorim, University of Illinois, Urbana-Champaign, IL.

Mammary utilization and secretion of β-hydroxybutyrate differs in dairy cows with hyperketonemia.

Interaction of pre-calving DCAD diet and serotonin infusions on hypocalcemia in Holstein multiparous cows.
C. J. Slater*, E. L. Endres, P. M. Crump, and L. L. Hernandez, University of Wisconsin-Madison, Madison, WI.

Use of milk progesterone (P4) data to predict non-pregnancy in dairy cows subjected to timed AI.
B. O. Omontese*, A. R. Santos, L. G. Silva, V. R. Merenda, and R. S. Bisinotto, Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN.

Effect of eCG administration on day 7 postpartum on resumption of ovarian cyclicity and uterine involution in dairy cows.
E. Rojas Cañadas*1,2, P. Lonergan2, and S. T. Butler1, 1Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland, 2School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.

Effect of short wavelength light from white LED on melatonin and appetite-related hormones in calves.
M. Mon*1, A. Shinoda2, T. Watanabe2, S. Kushibiki3, T. Obitsu1, and T. Sugino1, 1The Research Center for Animal Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan, 2Showa Denko K. K, Tokyo, Japan, 3National Institute of Livestock and Grassland Science, Tsukuba, Japan.

Delaying PRID Delta removal by 24 h during a 5-day PRID-synch protocol decreased expression of estrus before timed AI without affecting fertility in Holstein heifers.
V. G. Santos*1, P. D. Carvalho2, C. Maia2, B. Carneiro2, A. Valenza3, and P. M. Fricke1, 1Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, 2Diessen Serviços Veterinários Lda, Evora, Portugal, 3CEVA Santé Animale, Libourne, France.

Differences in nerve growth factor-β concentrations in bull seminal plasma and its association with sire conception rate scores.
J. S. Stewart1, I. F. Canisso1, J. C. Ferreira1, N. J. Sugai1, V. R. G. Mercadante2, and F. S. Lima*1, 1University of Illinois, Urbana-Champaign, IL, 2Virginia Tech University, Blacksburg, VA.

Production, Management, and the Environment II

Effect of culling rates on profitability of dairy herds achieving the same pregnancy rate.
G. M. Schuenemann*1, K. N. Galvão2, S. Borchardt3, W. Heuwieser3, and P. Federico4, 1Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 2Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, 3Clinic for Animal Reproduction, Faculty of Veterinary Medicine, Free University of Berlin, Berlin, Germany, 4Department of Mathematics, Computer Science and Physics, Capital University, Columbus, OH.

Factor screening for prediction of retention-pay offs of dairy cows using standardized regression coefficients, random forests, and the method of elementary effects.
A. Beyi* and A. De Vries, University of Florida, Gainesville, FL.

Prediction of dairy cow retention pay-offs with k-nearest neighbors methods.
A. Beyi* and A. De Vries, University of Florida, Gainesville, Florida.

Sources of variation in feed conversion in commercial dairy farms of Argentina.
R. A. Palladino*, C. Magliola1, E. Giugge2, C. Chiavassa2, J. L. Monge1, M. P. Turiello2, and F. Bargo, 1Universidad Buenos Aires, Buenos Aires, Argentina, 2Grupo Chiavassa, Carlos Pellegrini, Santa Fe, Argentina, 3Universidad Nacional de Villa Maria, Villa Maria, Córdoba, Argentina, 4Universidad Nacional de Rio Cuarto, Rio Cuarto, Córdoba, Argentina.
Effect of stocking rate on feeding strategies and individual milk production of autumn calving grazing dairy cows.
D. Custodio1, G. Ortega1, Y. Lopez2, T. Nuñez2, R. Mello3, and P. Chilibroste*4, 1Agronomy Faculty, Animal Science Department, CRS, Progreso, Canelones, Uruguay; 2Agronomy Faculty, Animal Science Department, Grass Production and Utilization on Grazing Systems, EEMAC, Paysandú, Paysandú, Uruguay.

Effect of stocking rate at system level on produced and harvested forage.
G. Ortega1, Y. Lopez1, T. Nuñez1, D. Custodio1, R. Mello2, and P. Chilibroste*3, 1Agronomy Faculty, Animal Science Department, CRS, Progreso, Canelones, Uruguay; 2Agronomy Faculty, Animal Science Department, Grass Production and Utilization on Grazing Systems, EEMAC, Paysandú, Paysandú, Uruguay.

Milk yield and somatic cell score of northeastern United States organic dairy farms during the grazing and non-grazing seasons.
J. G. B. Galvao Jr.*,1, A. F. Brito2, A. H. N. Range1, J. B. A. Silva1, A. F. Benson1, A. N. Hafla3, H. M. Darby4, K. J. Soder5, and R. Kersbergen6, 1Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, Ipanguaçu, RN, Brazil; 2University of New Hampshire, Durham, NH; 3Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; 4Universidade Federal do Semiárido, Mossoro, RN, Brazil; 5Cornell University Cooperative Extension, Cortland, NY; 6USDA-ARS, University Park, PA; 7University of Vermont, St. Albans, VT; 8University of Maine, Orono, ME.

Dairy calf management—A comparison of practices and producer attitudes among conventional and organic herds.
J. Pempek*, G. Schuenemann, E. Holder, and G. Habing, The Ohio State University, Columbus, OH.

Milk yield distribution within pens in commercial dairy farms.
P. Turiello*,1, C. Vissio1, S. Derado Mulleady1, F. Bargo1, A. Larriestra1, and A. Relling2, 1Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina; 2CONICET, Río Cuarto, Córdoba, Argentina; 3Universidad de Buenos Aires, Buenos Aires, Argentina; 4Ohio State University, Wooster, OH.

Using DHI electronic milk weights to improve farm management.
H. Adams* and R. Fourdraine, CRI International Center for Biotechnology, Mt. Horeb, WI.

Improved AMS benchmarking using cluster analysis.
M. Tremblay*,1, J. P. Hess1, B. M. Christenson2, K. K. Mcintyre1, B. Smink1, A. J. van der Kamp1, L. G. de Jong1, and D. Döpfer2, 1University of Wisconsin-Madison, Madison, WI; 2Lely North America, Pella, IA; 3Lely International N.V, Maassluis, the Netherlands.

Factors associated with increased milk production in automatic milking systems.
M. Tremblay*,1, J. P. Hess1, B. M. Christenson2, K. K. Mcintyre1, B. Smink1, A. J. van der Kamp1, L. G. de Jong1, and D. Döpfer2, 1University of Wisconsin-Madison, Madison, WI; 2Lely North America, Pella, IA; 3Lely International N.V, Maassluis, the Netherlands.

Estrus detected by activity monitors within 30 DIM is associated with estrus expression and fertility outcomes at first AI in lactating Holstein cows.
A. M. L. Madureira*1,2, L. B. Polsky1, B. F. Silper1, T. A. Burnett2, J. L. M. Vasconcelos1, and R. L. A. Cerri1, 1University of British Columbia, Vancouver, BC, Canada; 2Sao Paulo State University, Botucatu, SP, Brazil.

An evaluation of technology-recorded rumination and feeding behaviors in dairy heifers.
M. A. Myers*1,2, J. A. Davidson3, M. R. Borchers2, C. M. Bradley4, and J. M. Bewley5, 3Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE; 4Purina Animal Nutrition Center, Gray Summit, MO; 5Department of Animal and Food Sciences, University of Kentucky, Lexington, KY.

A case study of composting process establishment in a new compost bedded pack barn housing lactating dairy cattle.
M. Borchers*, J. Taraba, and J. Bewley, University of Kentucky, Lexington, KY.

Variables associated with milk yield and rumination time of Holstein cows housed in compost bedded pack barns.
J. L. Monge*,1, G. Clemente1, F. Clemente1, M. L. Zingaretti1, E. Giugge1, C. Chiavassa1, M. P. Turiello2, A. Palladino2, and F. Bargo3, 1Universidad Nacional Villa María, Villa María, Córdoba, Argentina; 2Grupo Chiavassa, Carlos Pellegrini, Santa Fe, Argentina; 3Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina; 4FAUBA, Buenos Aires, Argentina.

Factors of cow comfort associated with herd-level reproductive outcomes on Canadian dairy farms.
T. A. Burnett*,1, R. Westin2, E. Vasseur2, D. Pellerin3, D. B. Haley3, A. M. de Passillé4, J. Rushen5, and R. L. A. Cerri1, 1University of British Columbia, Vancouver, BC, Canada; 2McGill University, Sainte-Anne-de-Bellevue, QC, Canada; 3Université Laval, Quebec City, QC, Canada; 4University of Guelph, Guelph, ON, Canada.
T187 Relationship between cow cleanliness, locomotion, and bulk tank somatic cell count in southeastern United States dairy farms.
G. Mazon*1, J. Guinn1, D. Nolan1, P. Krawczel2, C. Peterssson-Wolfe3, G. Pighetti4, A. Stone14, S. Ward45, M. Marcondes6, and J. Bewley7, 1University of Kentucky, Lexington, KY, 2University of Tennessee, Knoxville, TN, 3Virginia Polytechnic Institute, Blacksburg, VA, 4Mississippi State University, Starkville, MS, 5North Carolina State University, Raleigh, NC, 6Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.

T188 Evaluation of four on-farm culture plates to identify pathogens associated with mastitis in dairy cows.
J. C. Ferreira*, M. S. Gomes, E. C. R. Bonsaglia, I. C. Canisco, E. F. Garrett, and F. S. Lima, University of Illinois, Champaign-Urbana, IL.

T189 Abortion lactation curves.
M. Piccardi*1,4, A. C. Funes2, G. Bó3, and M. Balzarini41, 1Facultad de Ciencias Agropecuarias de la Universidad Nacional de Córdoba, Córdoba, Argentina, 2DairyTech S.R.L., Rosario, Santa Fe, Argentina, 3Instituto de Reproducción Bovina Córdoba, Córdoba, Argentina, 4CONICET, Córdoba, Argentina.

T190 Relationship between body condition score and serum plasm insulin-to-glucose ratio on embryo production in lactating dairy cows.
T. S. Dennis*1, F. X. Suarez-Mena1, G. J. Lascano1, T. M. Hill1, J. D. Quigley1, W. Hu2, and R. L. Schlotterbeck1, 1Nurture Research Center, Proviimi North America, Brookville, OH, 2Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC.

T191 Does a 500-ohm shunt resistor accurately characterize the electrical resistance of adult dairy cattle?
R. Norell*, J. Spencer2, A. Ahmadzadeh3, M. E. de Haro Martí4, and M. Chahine5, 1University of Idaho, Idaho Falls, ID, 2University of Idaho, Moscow, ID, 3University of Idaho, Gooding, ID, 4University of Idaho, Twin Falls, ID.

T192 Survey of work processes on German dairy farms.
A. Hesse*1,2, S. Bertulat1, and W. Heuwieser1,2, 1Survey of work processes on German dairy farms.

Ruminant Nutrition II

T193 Partial replacement of maize meal and molasses for cracked maize in supplements of grazing dual-purpose cows during the dry season.

T194 Effects of supplementary folic acid and vitamin B12 on glucose and insulin responses of feed-restricted dairy cows to an intravenous glucose tolerance test.
C. L. Girard*, N. Vanacker, M. Duplessis, and P. Lacasse, Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.

T195 Evaluation of rumen degradability and intestinal digestibility of canola meal.
A. Rouissi12, H. Lapierre1, D. Pellerin1, K. Békri12, and D. R. Ouellet2, 1Université Laval, Québec, QC, Canada, 2Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.

T196 Effects of straw processing and pen stocking density on Holstein dairy heifers: 1. Growth and sorting behaviors.
W. K. Coblenz*, M. S. Akins2, N. M. Esser2, and R. K. Ogden1, 1US Dairy Forage Research Center, Marshfield, WI, 2University of Wisconsin, Marshfield, WI.

T197 Effects of straw processing and pen stocking density on Holstein dairy heifers: 2. Behavior and hygiene.
W. K. Coblenz*, M. S. Akins2, N. M. Esser2, and R. K. Ogden1, 1US Dairy Forage Research Center, Marshfield, WI, 2University of Wisconsin, Marshfield, WI.

T198 Effect of feeding increasing amounts of beet pulp on weaned calf performance and digestion.
T. S. Dennis*, F. X. Suarez-Mena1, G. J. Lascano1, T. M. Hill1, J. D. Quigley1, W. Hu1, and R. L. Schlotterbeck1, 1Nurture Research Center, Proviimi North America, Brookville, OH, 2Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC.
T200 Effects of milk replacer feeding rate and age at weaning on calf performance and digestion through 8 weeks of age.

T201 Impact of tannins and grazing schedule on nitrogen partitioning in lactating dairy cows.
C. A. Pozo**, G. V. Kozloski†, C. Cajavilla†, A. R. Sprunck†, Y. A. Ketenjian†, M. Cuffia†, and J. L. Repetto†, 1Departamento de Zootecnia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil, 2Facultad de Veterinaria, Universidad de la República, San José, Uruguay, 3Facultad de Agronomía, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina.

T202 Lactational performance and energy partitioning of dairy cows fed with N-acetyl-l-methionine as a source of rumen-protected methionine during mid to late lactation.
T. G. Grisenti†, S. Sharp†, S. Y. Yang†, J.-S. Eun†*, J. O. Hall†, J. S. Park‡, and J. O. Moon‡, 1Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 2CJ CheilJedang Research Institute of Biotechnology, Suwon, South Korea.

T203 Effects of drying procedures of milk, urine, and fecal samples on nitrogen losses and its effects on nitrogen secretion and excretion in dairy cows.

T204 Effect of top dressing plant extracts in early lactating Holstein cow: milk yield, milk composition, plasma lipomobilization indicators and body condition score.
D. K. Kumprechtova†, B. C. Cadudal‡, and F. J. Jancik‡, 1Institute of Animal Science Prague, Prague, Czech Republic, 2Phytosynthesis, Mozac, France.

T205 Effects of lactose and sucrose with varying starch and rumen degradable protein concentrations on ruminal fermentation in vitro.
E. L. Sorge* and R. D. Shaver, University of Wisconsin-Madison, Madison, WI.

T206 In vitro disappearance fails to predict extent of ruminal and total tract digestion of NDF and starch from corn silage diets by growing Holstein heifers.
L. Nuzback†, R. A. Zinn†, and F. N. Owens‡, 1DuPont Pioneer, Johnston, IA, 2University of California, Imperial Valley, CA.

T207 Could diet composition modulate concentration of vitamin B₆ in milk?
M. Duplessis*, R. Robichaud†, L. Faldu-Pacheco†, D. Pellerin‡, D. E. Santschi‡, and C. L. Girard‡, 1Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada, 2Université Laval, Département des sciences animales, Québec, QC, Canada, 3Valacta, Sainte-Anne-de-Bellevue, QC, Canada.

T208 Effects of protein and forage sources on milk production, rumen parameters and intestinal digestibility in lactating dairy cows.
C. E. Galindo†, D. R. Ouellet†, G. Maxin‡, R. Martineau‡, D. Pellerin‡, and H. Lapierre‡*, 1Université Laval, Québec, QC, Canada, 2Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.

T209 Dietary camelina cake changes the ruminal bacterial community compositions in a dual-flow continuous culture system.
X. Dai†, P. J. Weimer§, K. A. Dill-McFarland§, V. L. N. Brandaø, L. G. Silva§, E. M. Paula§, T. Shenkoru§, G. Suen§, and A. P. Faciola§, 1Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, NV, 2Departments of Bacteriology and Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 3US Department of Agriculture, Agricultural Research Service, Madison, WI.

T210 First-lactation performance of Holstein cows fed milk replacer or pasteurized or raw non-saleable milk as preweaning heifers.
M. Garcia*, S. R. Montgomery, L. E. Hulbert, and B. J. Bradford, Kansas State University, Manhattan, KS.

T211 Enriching bovine milk fat with α-linolenic acid, an n-3 fatty acid, through feeding of a rumen-protected flax-based supplement.
H. Peterson*, R. Day‡, J. E. Williams‡, W. J. Price‡, B. Shafii‡, and M. A. McGuire‡, 1University of Idaho, Moscow, ID, 2N3 Feed LLC, Tualatin, OR, 3Statistical Programs, College of Agriculture and Life Sciences, University of Idaho, Moscow, ID.
Determination of the bioavailability of lysine in the latest generation of a rumen-protected lysine product exposed to TMR using the in vivo plasma lysine response method.

Characteristics of a rumen-protected lysine product. 1: Bioavailability of the third-generation AjiPro-L.

M. Miura*1, A. Haruno1, H. Sato1, S. Shimizu1, M. Nakamura1, Y. Miyazawa1, T. Fujieda1, and I. Shinzato1, 1Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co. Inc., Kawasaki, Kanagawa, Japan, 2Ajinomoto Heartland Inc., Chicago, IL.

Characteristics of a rumen protected lysine product. 2: Handling properties of the third-generation AjiPro-L in feeding practices.

M. Miura*1, A. Haruno1, M. Tanida1, Y. Miyazawa1, T. Fujieda1, and I. Shinzato2, 1Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co. Inc., Kawasaki, Kanagawa, Japan, 2Ajinomoto Heartland Inc., Chicago, IL.

Impact of tannins and grazing schedule on ruminal inoculum activity of dairy cows: Evaluation using the in vitro gas-production technique.

C. A. Pozo*1, J. L. Repetto2, G. V. Kozloski3, M. Cuffia4, A. Ramírez5, and C. Cajarville6, 1Departamento de Zootecnia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil, 2Facultad de Veterinaria, Universidad de la República, San José, Uruguay, 3Facultad de Agronomía, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina.

Evaluation of starter intake in Holstein calves during weaning using blood β-hydroxybutyrate concentrations measured with a handheld meter.

R. A. Molano*1 and M. E. Van Amburgh, Department of Animal Science, Cornell University, Ithaca, NY.

Effect of cinnamaldehyde on feed intake, rumen fermentation, nutrient digestibility, and milk components in lactating dairy cows.

C. Chapman*1, S. Ort2, K. Aragona3, R. Cabral4, and P. Erickson5, 1Penn State Extension-Bradford County, Towanda, PA, 2Cornell Cooperative Extension of Chemung County, Elmira, NY, 3University of New Hampshire, Durham, NH, 4Famo Feeds Inc., Freeport, MN.

Gene expression of some hepatic gluconeogenic and fatty acid metabolism in early lactation dairy cows as affected by dietary starch and monensin supplementation.

M. M. McCarthy*1, G. D. Mechor1, and T. R. Overton2, 1Elanco Animal Health, Greenfield, IN, 2Department of Animal Science, Cornell University, Ithaca, NY.

Effect of dry matter intake (DMI) on N metabolism and urea kinetics in lactating dairy cows.

S. H. Lee1, H. Lapierre2, and D. R. Ouellet*2, 1Gyeongsangnam Livestock Promotion Institute, Sancheong, South Korea, 2R&D Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.

Effects of forage level and site of starch digestion on N utilization and in vitro urea flux across the ovine ruminal, duodenal, and cecal epithelia.

K. Scott1, G. B. Penner, and T. Mutsvangwa, Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada.

Effect of prepartum nonesterified fatty acids on milk yield and first postpartum ovulation in multiparous Holstein dairy cows.

E. Miqueo1, A. Chiarle2, M. J. Giuliodori2, and A. E. Relling*3, 1Department of Animal Sciences, The Ohio State University, Wooster, OH, 2Department of Animal Science and Kansas State University, Manhattan, KS, 3Department of Animal, Labor and Society, UNLP, La Plata, Buenos Aires Argentina.

Effects of different physical starter forms on health, growth, rumen parameters and selected blood metabolites in dairy calves.

C. Du1,2, Y. G. Zhen1, L. Ma1,2, A. F. Kertz1, and D. P. Bu*1,3, 1State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 2Jilin Agricultural University, Changchun, Jilin, China, 3ANDHIL LLC, Louis, MO, 4CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing, China, 5Hunan Co-Innovation Center of Safety Animal Production, CICSAIP, ChangSha, Hunan, China.

Comparative effects of different forms of flax seed and oil on milk yield and composition in dairy cows: A meta-analysis.

M. Leduc*, M.-P. Létourneau-Montminy, R. Gervais, and P. Y. Chouinard, Département des sciences animales, Université Laval, Québec, QC, Canada.
Effect of replacing alfalfa hay with triticate hay on milk production and nitrogen metabolism in dairy cows.
O. Santana*1, J. Olmos-Colmenero2, and M. Wattiaux1, 1University of Wisconsin-Madison, Madison, WI, 2Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán, Jalisco, México.

Comparative effects of chitosan supplementation on nutrient intake and digestibility of Holstein steers.
T. Lemos1, M. Ferreira1, A. Pause*1, I. Franco1, G. Rodrigues1, H. Araki1, A. Santos1, C. Takiya2, A. Gabriel1, E. Oliveira2, and J. Gandra3, 1Universidade Federal da Grande Dourados, Dourados, Brazil, 2Kansas State University, Manhattan, KS.

Relative reticulo-rumen pH indicators for subacute ruminal acidosis detection in dairy cows.
C. Villot*1, B. Meunier1, J. Bodin2, 1Institut national de la recherche agronomique, UMR1213 Herbivores, Saint-Genès-Chapmanelle, France, 2BR3 Consultants, Lyon, France.

Omnigen-AF improves milk yield and composition of grazing dairy cows under a semi-intensive management.
N. Orbach1, C. Pedrini1, R. Santos1, B. Alem1, R. Barbosa1, G. Barreto1, L. Barbosa1, C. Takiya2, A. Pause*1, E. Oliveira1, and J. Gandra3, 1Universidade Federal da Grande Dourados, Dourados, Brazil, 2Kansas State University, Manhattan, KS, 3Phibro Animal Health Corporation, Teaneck, NJ.

Yeast-based supplements as an efficient peri-parturient solution on performance and health status of dairy cows.
C. Julien1, J. P. Marden1, Y. Huang*1, and D. Kumprechtova2, 1Institute of Animal Science Prague, Prague, Czech Republic.

The effect of inclusion of soybean meal or canola meal or an excess of rumen-degradable protein on N metabolism in dairy cows fed grass silage-based diets.
C. Roy*1,2, D. R. Ouellet2, D. Pellerin1, and H. Lapierre2, 1Department of Animal Science, Université Laval, Québec, Canada, 2Agriculture and Agri-Food Canada, Sherbrooke, Québec, Canada.

Health, milk yield and milk quality records evaluated in 76 European dairy farms before and during OmniGen-AF supplementation to dry and lactating cows.
R. Garcia-Gonzalez*1, P. Bozzi1, M. Corsini1, A. Dekker1, W. Germis1, E. Hoogland1, J. Chapman1, and L. Ely2, 1Phibro Animal Health Corp, Teaneck, NJ, 2University of Georgia, Athens, GA.

Effect of dietary supplementation of two forms of B-vitamins on growth and efficiency of Holstein calves from 3 to 13 weeks of age.
R. A. Molano*1, C. L. Girard2, and M. E. Van Amburgh1, 1Department of Animal Science, Cornell University, Ithaca, NY, 2Agriculture & Agri-Food Canada, Sherbrooke, QC, Canada.

Original XPC and NutriTek increase volatile fatty acid production in an in vitro rumen microbial model using TMR diets from various US regions.
T. Kwan*, C. Reedy, T. Werner, J. Butler, and I. Yoon, Diamond V, Cedar Rapids, IA.

Monitoring ketosis in a commercial Holstein and Jersey herd.
K. E. Mitchell*1, and H. A. Rossow, University of California, Davis, Davis, CA.

Effects of spray-dried plasma product on transition and early lactation dairy cows.
C. Lee*1, A. Tebbe1, J. M. Campbell2, and W. P. Weiss1, 1Department of Animal Sciences, OARDC, The Ohio State University, Wooster, OH, 2APC Inc., Ankeny, IA.

Effect of source and pelleting on protein degradation of dried distillers grains with solubles.
A. Carpenter*1,2, J. F. Rivera1,3, C. Ylioja1, K. Herrick2, and B. Bradford2, 1Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS, 2University of Guelph, Department of Animal Biosciences, Ridgetown, ON, Canada, 3Universidad Zamorano, Francisco Morazan, Honduras, 4POET Nutrition, Sioux Falls, SD.

Effects of spray-dried plasma product supplementation on transition and lactation on milk production and reproduction in dairy cows.
A. Bach*1,2, J. Polo1, J. M. Campbell1, M. E. de Haro Martí4, and M. Chahine5, 1ICREA, Institució Catalana de Recerca i Estudis Avançats, Spain, 2Department of Ruminant Production, IRITA, Spain, 3Department of Animal and Veterinary Science, University of Idaho Extension, University of Idaho, Twin Falls, ID, 4Department of Animal Science, Cornell University, Ithaca, NY, 5Department of Animal Science, University of Wisconsin-Madison, Madison, WI.

Performance response of dairy cattle supplemented with a fungal-derived extract from Trichoderma reesei.
I. Guasch1, G. Elcoso1, M. S. Gómez-Conde2, N. D. Walker1, G. Cordero1, and A. Bach*1,2, 1Blanca, Hostalets de Tost, Lleida, Spain, 2SETNA SAU, Madrid, Spain, 3ABVista, Marlborough, UK, 4ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain, 5Department of Ruminant Production, IRITA, Caldes de Montbui, Spain.
Consequences of supplying methyl donors during pregnancy on the methylome of the offspring from lactating and non-lactating dairy cattle.
A. Bach¹2, A. Aris¹, A. Pinto¹, and L. Guasch³, ¹ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain, ²Department of Ruminant Production, IRTA, Caldes de Montbui, Spain, ³Blanca from the Pyrenees, Lleida, Spain.

Relationship of NDFD24 and uNDF240 to NDF components and the impact of maturity on predicted digestible energy of corn plants harvested at silage maturity.

The time of wheat straw inclusion affects weaning weight and average daily gain in Holstein calves.
A. Gahremani¹, E. Mahjoubi¹, M. Chamani¹, M. H. Yazdi¹, R. A. Patton*, and M. Bahrami¹, ¹Islamic Azad University, Tehran, Iran, ²University of Zanjan, Zanjan, Iran, ³Nittany Dairy Nutrition Inc., Mifflinburg, PA, ⁴Afzalian Dairy Farm, Qazvin, Iran.

Effect of diet supplementation with probiotic Pediococcus acidilactici or Bacillus subtilis on milk production and ruminal pH in dairy cattle.
A. D. Thomas¹, C. S. House¹, B. C. Dooley¹, G. Copani², B. K. K. Nielsen², N. Milora², R. C. Cernat², and H. A. Ramirez-Ramirez², ¹Iowa State University, Ames, IA, ²Chr-Hansen Animal Health and Nutrition, Horsholm, Denmark.

Amount of milk replacer offered to female Holstein calves during first eight weeks of life: Effect on ruminal pH and diet digestibility in pre and post weaning weeks.
G. Antúnez¹, C. Cajarville¹, C. M. Fernández¹, J. E. Dayuto¹, L. M. Artús¹, M. Fernández¹, L. Hornos¹, F. Correa¹, R. Biasiolo², A. Vicente¹, and J. L. Repetto¹, ¹Instituto de Producción Animal de Veterinaria, Facultad de Veterinaria, Universidad de la República, Libertad, San José, Uruguay, ²Centro de Ciencias Agroveternarias Universidad de Estado de Santa Cata-rina, Lages, Santa Catarina, Brazil, ³Facultad de Ciencias Veterinarias de la Universidad del Nordeste, Cabral, Corrientes, Argentina.

Microbial community structure of conventional and brown midrib corns ensiled at low dry matter concentrations with and without a combo inoculant.
J. J. Romero*¹, J. W. Park¹, Y. Zhao¹, Y. H. Joo¹, M. A. Balseca-Paredes⁴, E. Gutierrez-Rodriguez⁶, and M. S. Castillo⁶, ¹Animal and Veterinary Sciences, School of Food and Agriculture, University of Maine, Orono, ME, ²Division of Applied Life Science (BK-21Plus, Inst. of Agri. & Life Sci.), Gyeongsang National University, Jinju, Korea, ³Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China, ⁴Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, ⁵Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC.

Inclusion of canola meal increases milk response in partial mixed rations and grain mixes fed to grazing cows.

Effect of crude glycerin combined with virginiamycin on performance and fatty acid profile of Longissimus muscle of Nellore bulls fed with finishing diets.

Metabolic responses in biofluid and feces of dairy cows fed different ratio of dietary neutral detergent fiber to starch.
L. Ma¹, T. T. Li¹, M. Zhao¹, L. S. Zhao¹, J. Q. Wang¹, J. J. Wang¹, Z. T. Yu¹, and D. P. Bu*¹,², ¹State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, ²China Agricultural University, Beijing, China, ³Department of Animal Sciences, The Ohio State University, Columbus, OH, ⁴CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing, China, ⁵Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, China.

Effects of different sources of dietary zinc on growth performance and incidence of diarrhea of newborn calves.
L. Y. Hao¹, P. Sun¹, J. Wang¹, and D. P. Bu*¹,², ¹State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, ²CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing, China, ³Hunan Co-Innovation Center of Safety Animal Production, CICSAP, Changsha, Hunan, China.

Effects of limit-feeding forage to concentrate ratios on nutrients intake, rumination, ruminal fermentation, digestibility, and growth in Holstein heifers.
J. Zhang, H. Shi, Z. Cao, S. Li, S. Ji*, and Y. Wang, State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China.
J. Wang⁴, P. Sun¹, W. Liu⁵, and D. P. Bu²,³, ¹State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, ²CAAS-ICRAS Joint Lab on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing, China, ³Hunan Co-Innovation Center of Safety Animal Production, CICSA, Changsha, Hunan, China.

Supplementation of lactating dairy cows with strains of live yeast during summer.
K. T. Silva¹,², F. F. Cardoso¹, E. F. Barbosa¹, J. C. Silva¹, L. J. Lara¹, E. A. Garcia¹, M. Aronovich¹,³, A. P. Peconick¹, R. A. N. Pereira¹,², and M. N. Pereira*¹,², ¹University of Lavras, Lavras, Brazil, ²Minas Gerais Ag Research Enterprise (Epamig), Lavras, Brazil, ³Phileo Lesaffre Animal Care, Lille, France.

Evaluation of acidified milk for feeding dairy calves in tropical climates.
M. G. Coelho, F. L. M. Silva, M. D. Silva, A. P. Silva, A. C. Silva, J. Hartmann, and C. M. M. Bittar*, ESALQ, University of Sao Paulo, Piracicaba, Sao Paulo Brazil.

Supplementation to late lactation dairy cows during summer with dead yeast culture.
J. D. L. Dias¹, R. B. Silva¹,², L. E. C. Graças¹, K. Ferreira¹, L. C. Resende¹, R. C. Araujo¹, R. A. N. Pereira¹,², and M. N. Pereira*¹,², ¹University of Lavras, Lavras, Brazil, ²Better Nature Research Center, Ijaci, Brazil, ³Grasp Industria e Comercio, Curitiba, Brazil, ⁴Minas Gerais State Ag Research Enterprise (Epamig), Lavras, Brazil.

Supplementation of lactating dairy cows with strains of live yeast during summer.
R. B. Silva¹,², W. R. Silva¹, R. C. Cunha¹, B. B. C. Junqueira¹, M. A. S. Lara¹, J. F. Santos¹, R. C. Araujo¹, R. A. N. Pereira¹,², and M. N. Pereira*¹,², ¹University of Lavras, Lavras, Brazil, ²Better Nature Research Center, Ijaci, Brazil, ³Cooperativa Castrolanda Castro, Brazil, ⁴Grasp Industria e Comercio, Curitiba, Brazil, ⁵Minas Gerais Ag Research Enterprise (Epamig), Lavras, Brazil.

Supplementation of lactating cows with a blend of essential oils and capsicain or monensin: Performance and digestion.
R. B. Silva¹,², W. R. Silva¹, C. D. Oliveira¹, R. C. Araujo¹, R. A. N. Pereira¹,², and M. N. Pereira*¹,², ¹University of Lavras, Lavras, Brazil, ²Better Nature Research Center, Ijaci, Brazil, ³Grasp Industria e Comercio, Curitiba, Brazil, ⁴Minas Gerais State Ag Research Enterprise (Epamig), Lavras, Brazil.

Supplementation of lactating cows with a blend of essential oils and capsicain or monensin: Thermoregulation and blood variables.
R. B. Silva¹,², W. R. Silva¹, C. D. S. Oliveira¹, A. C. C. Lacreta Junior¹, L. H. L. Chalfun¹, R. C. Araujo¹, R. A. N. Pereira¹,², and M. N. Pereira*¹,², ¹University of Lavras, Lavras, Brazil, ²Better Nature Research Center, Ijaci, Brazil, ³Grasp Industria e Comercio, Curitiba, Brazil, ⁴Minas Gerais State Ag Research Enterprise (Epamig), Lavras, Brazil.

Production effects of phytonutrients alone or in combination with yeast culture in lactating dairy cows.
J. Oh*, M. Harper¹, A. Melgar¹, E. Wall¹, and A. Hristov¹, ¹The Pennsylvania State University, University Park, PA, ²Pancosma, Geneva, Switzerland.

Effect of an abomasal amylase administration on postruminal starch digestion in heifers.
K. Hansen¹, E. Westreicher-Kristen¹, A. Tröscher*¹, R. Blank¹, U. Dickhöfer¹, and A. Susenbeth¹, ¹Christian-Albrechts-Universität zu Kiel, Kiel, Germany, ²BASF SE, Ludwigshafen, Germany, ³Universität Hohenheim, Stuttgart, Germany.

Effect of a Saccharomyces cerevisae-based direct-fed microbial product and an enzyme extract from Aspergillus oryzae and Aspergillus niger on productivity and enteric gas emission in lactating dairy cows.
J. Oh*, M. Harper¹, A. Melgar¹, D. P. Compert², and A. Hristov¹, ¹The Pennsylvania State University, University Park, PA, ²PMI Nutritional Additive, Arden Hills, MN.

Ad libitum milk feeding and butyrate supplementation differently affect the somatotropic axis in dairy calves.
D. Frieten*, C. Gerbert², C. Koch², G. Dusel², K. Eder², B. Mielenz², A. Hoeßlich², and H. M. Hammon³, ¹Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany, ²Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, Muenchweiler an der Alsenz, Germany, ³Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany, ⁴Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
Effect of sodium acetate supplementation on in vitro production of volatile fatty acids and gases.
L. M. Judd* and R. A. Kohn, University of Maryland, College Park, MD.

Fava bean (Vicia faba L. major) inclusion in dairy cow diets: Effect on enteric methane production and milk performance.
C. Cherif*, F. Hassanat1, S. Claveau, J. Girard, R. Gervais, and C. Benchaar, 1Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada, 2Département des Sciences Animales, Université Laval, Québec, QC, Canada.

Effect of phytochemical feed additives added to starter grain on weight gain and rumen development in Holstein calves.
H. A. Rooss1, K. Mitchell, A. Johnson*, and B. Miller, 1University of California Davis, Tulare, CA, 2Biomin America Inc., San Antonio, TX.

Fava bean (Vicia faba L. major) inclusion in dairy cow diets: Effects on nitrogen utilization.
C. Cherif*, F. Hassanat, S. Claveau, J. Girard, R. Gervais, and C. Benchaar, 1Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada, 2Département des Sciences Animales, Université Laval, Québec, QC, Canada.

Evaluation of different liquid diets associated with environmental enrichment for dairy calves.
M. D. Silva, M. G. Coelho, A. P. A. Moreira, M. Poczynek, and C. M. M. Bittar*, ESALQ, University of Sao Paulo, Piracicaba, Sao Paulo, Brazil.

Metabolic profile, feeding behavior and production responses of lactating dairy cows supplemented with a combination of osmolyte feed ingredients (I.C.E.) and submitted to high temperature and humidity environment.
J. Franck1,2, F. Terra1, A. Barbosa1,2, M. N. Corrêa1,2, F. A. B. Del Pino1,2, D. B. Araújo1, and E. Schmitt1,2, 1Federal University of Pelotas, Capão do Leão, Brazil, 2NUPPEC, Capão do Leão, Brazil, 3Cargill Animal Nutrition, Campinas, Brazil.

Effects of an immunomodulatory feed additive on health, blood metabolites, milk composition, and milk quality in multiparous transition Holstein cows.
Z. Wu1, G. Alugongo1, J. Xiao1, J. Li1, Y. Yu2, Y. Li2, Y. Wang1, S. Li1, and Z. Cao*, 1China Agricultural University, Beijing, China, 2Hunan University of Science and Technology, Luoyang, Henan, China.

C16:0 supplementation alters markers of adipose tissue lipolysis and inflammation in early lactation dairy cows.
J. de Souza*, C. Strieder-Barboza, G. A. Contreras, and A. L. Lock, Michigan State University, East Lansing, MI.

Long-term effects of C16:0 supplementation on production responses of lactating dairy cows.
J. de Souza* and A. L. Lock, Michigan State University, East Lansing, MI.

Altering the ratio of dietary C16:0 and cis-9 C18:1 modifies the fatty acid profile of plasma lipid fractions and adipose tissue.

Altering source of chelated trace minerals improves milk fat in commercial dairy.
H. Tucker* and M. Vazquez-Anon, Novus International, St. Charles, MO.

Comparison of ruminal bacterial communities in dairy herds of different production.
N. Indugu*, B. Vecchiarelli1, L. Baker1, J. Ferguson1, J. Vanamala1, and D. Pitta1, 1University of Pennsylvania, New Bolton Center, PA, 2The Pennsylvania State University, University Park, PA.

Evaluation of solubles syrup from microbially enhanced soy protein production as a supplement for growing dairy heifers.
C. R. Scossow and J. L. Anderson*, Dairy and Food Science Department, South Dakota State University, Brookings, SD.

Dairy heifer growth performance when fed hydroponically grown barley sprouts.
R. D. Lawrence* and J. L. Anderson, Dairy and Food Science Department, South Dakota State University, Brookings, SD.

The effects of feeding rations that differ in neutral detergent fiber and starch within a day on the daily pattern of selected rumen microbial populations.
I. J. Salfer*, C. E. Crawford, Y. Ying, and K. J. Harvatine, The Pennsylvania State University, University Park, PA.

Acute high-grain challenge triggers a hepatic inflammatory response and alteration of lipid metabolism in Holstein but not Jersey cows.
T. Xu*, F. C. Cardoso1, E. Trevisi1, X. Shen1, and J. J. Loor*, 1College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China, 2Department of Animal Sciences, University of Illinois, Urbana, IL, 3Università Cattolica del Sacro Cuore, Piacenza, Italy.
Implications of rumen inoculation on the ruminal bacterial populations in dairy cows with diet induced milk fat depression.
D. Pitta¹, N. Indugu¹, B. Vecchiarelli¹, D. Rico³, and K. Harvatine², University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, PA, Penn State University, University Park, PA, Centre de Recherche en Sciences Animales de Deschambault, Deschambault, QC, Canada.

Effects of varying prepartum DCAD and calcium concentrations on pre- and postpartum body weight, intake, milk yield and milk composition.
A. L. Diehl*, J. K. Bernard¹, S. Tao¹, T. N. Smith¹, D. J. Kirk², D. J. McClean², and J. D. Chapman², University of Georgia, Tifton, GA, Phibro Animal Health, Corp, Teaneck, NJ.

Comparing selected corn grains using in vitro starch digestion or gas production.
D. R. Mertens**, N. Schlau², and D. Taysom², Mertens Innovation & Research LLC, Belleville, WI, Dairyland Laboratories Inc., Arcadia, WI.

Steam explosion of corn stover: Saccharification, fermentation, and microbial colonization in rumen of dairy cows.
G. Li¹, S. Zhao¹,¹, N. Zheng¹,¹, and J. Wang¹,¹, Ministry of Agriculture-Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, Ministry of Agriculture-Laboratory of Quality and Safety Risk Assessment for Dairy Products, Beijing, China, Ministry of Agriculture-Milk and Dairy Product Inspection Center, Beijing, China, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.

Effects of clay on ruminal degradability of alfalfa hay, grass hay, wet brewer's grains, ground corn, corn silage, and soybean meal.
M. E. Weatherly¹, S. A. Sulzberger¹, A. Pineda¹, Y. Khidoyatov², M. R. Murphy¹, and F. C. Cardoso¹, University of Illinois, Department of Animal Sciences, Urbana, IL, United Minerals Group, Kyiv, Ukraine.

Effective fiber for lactating dairy cows: A physically adjusted NDF (panNDF) system.
R. R. White¹, M. B. Hall¹, J. L. Firkins¹, and P. J. Kononoff*, Department of Animal and Poultry Science, Virginia Tech, Blacksburg, VA, U.S. Dairy Forage Research Center, Madison, WI, Department of Animal Sciences, The Ohio State University, Columbus, OH, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE.

Effects of virginiamycin supplementation on milk yield and its composition in high-producing dairy cows.
P. M. Souza¹, J. K. Poncheki¹, L. Barbosa¹, D. P. P. Lanna¹, and R. Almeida*, Universidade Federal do Paraná, Curitiba, PR, Brazil, Phibro Animal Health, Campinas, SP, Brazil, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, SP, Brazil.

Evaluation of chemical composition and in vitro protein and fiber digestibility of corn dried distillers grains with solubles originating from seven sources.
E. Dufour*, J. Judy¹, K. Herrick², and P. Kononoff¹, University of Nebraska-Lincoln, Lincoln, NE, Poet Nutrition LLC, Sioux Falls, SD.

Effects of DHA and ARA on performance, nutrient metabolism, and activation of the immune system in Holstein heifers.
C. F. Vargas-Rodriguez, K. E. Olagaray*, R. Rusk, L. K. Mamedova, J. L. McGill, and B. J. Bradford, Kansas State University, Manhattan, KS.

Maternal ethyl-cellulose rumen-protected methionine supplementation alters blood biomarkers and immune function in neonatal Holstein calves.
A. S. Alharthi*, F. Batistel¹, C. Parys¹, A. Helmbrecht¹, M. A. Ballou¹, E. Trevisi¹, and J. J. Loor¹, University of Illinois at Urbana-Champaign, Urbana, IL, Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Germany, Department of Animal Sciences, Texas Tech University, Lubbock, TX, Istituto di Zootecnica, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy.
Small Ruminant II

T289 Estrus and ovarian response in Alpine and Criollo goats primed with progesterone plus human chorionic gonadotropin in anestrous period.

T290 Effect of rumen-protected methionine and choline supplementation during dry period on dairy goats metabolic and inflammatory profile.

T292 Effects of forage to concentrate ratio in dairy ewes in early lactation: 2. Milk fatty acid profile and cheese-yielding traits.

T293 Out of breeding season sexual biostimulations of Dorper rams improve sexual behavior but not the male effect.

T294 Milk fatty acid profile of dairy ewes fed contrasting sources of energy supplementation.
SYMPOSIA AND ORAL SESSIONS

ADSA Multidisciplinary and International Leadership (MILK) Symposium:
The Dairy Cow in 50 Years

Chairs: Michael VandeHaar, Michigan State University, and Kent Weigel, University of Wisconsin
Room 301-302

9:30 AM 272 The Dairy Cow in 50 Years: A symposium for all ADSA members and especially for graduate students in dairy production.
Michael VandeHaar*, Michigan State University, East Lansing, MI.

9:45 AM 273 A vision of the dairy farm and dairy cow in 50 years.
J. H. Britt*, Jack H Britt Consulting, Etowah, NC.

10:15 AM 274 Possibilities in an age of genomics: The future of the breeding index.
J. B. Cole*, Animal Genomics and Improvement Laboratory, ARS, USDA, Beltsville, MD.

10:45 AM Break

11:00 AM 275 Building a better cow: The Australian experience and what’s next.
J. E. Pryce*1,2 and M. Shaffer1, 1Agriculture Victoria, Bundoora, VIC, Australia, 2La Trobe University, Bundoora, VIC, Australia.

11:30 AM 276 Building a better cow. How can we be sure she is adaptable?

12:00 PM Discussion

Animal Health III

Chair: Matthew Sellers, Milk Specialties Global
Room 324

9:30 AM 277 Management practices for male calves on Canadian dairy farms.
D. L. Renaud*, T. F. Duffield, S. J. LeBlanc, D. B. Haley, and D. F. Kelton, Department of Population Medicine, University of Guelph, Guelph, ON, Canada.

9:45 AM 278 Neonatal management factors on dairy farms associated with mortality on veal farms.
D. L. Renaud*, D. F. Kelton, S. J. LeBlanc, D. B. Haley, and T. F. Duffield, Department of Population Medicine, University of Guelph, Guelph, ON, Canada.

10:00 AM 279 Aluminized reflective covers: Effect on calf behavior, health, and performance during summer.

10:15 AM 280 Associations of management practices and calf health on dairy farms using automated milk feeders in southern Ontario.
C. Medrano-Galarza*1,2, S. J. LeBlanc1,2, A. Jones-Bitton1, T. J. DeVries3,4, A. M. de Passillé1, J. Rushen1, M. I. Endres4, and D. B. Haley1,5, 1Department of Population Medicine, University of Guelph, Guelph, ON, Canada, 2Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, 3Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, 4Department of Animal Science, University of Minnesota, St. Paul, MN, 5Campbell Centre for the Study of Animal Welfare, University of Guelph, Guelph, ON, Canada.

10:30 AM 281 Factors associated with veal calf morbidity on an Ontario grain-fed (red) veal operation.
K. Scott*, D. Renaud, T. Duffield, and D. Kelton, University of Guelph, Guelph, ON, Canada.
Behavior activity detected via 3D acceleration before diarrhea events in neonatal dairy calves.
J. F. Castillo*, J. L. Loob, J. S. Osorio, and F. C. Cardoso, Escuela Agrícola Panamericana El Zamorano, Honduras, South Dakota State University, Brookings, SD, University of Illinois, Champaign-Urbana, IL.

Real time determination of immunoglobulins levels in colostrum by using on-line computerized a herd management system.

Validation of commercial luminometry swabs for enumeration of total bacteria and coliform counts in colostrum feeding equipment.
D. L. Renaud, T. F. Duffield, D. B. Haley, S. J. LeBlanc, and D. F. Kelton, Department of Population Medicine, University of Guelph, Guelph, ON, Canada.

Fresh cow illness detection using productivity and behavioral data in robotic milking herds.
M. T. M. King*, S. J. LeBlanc, T. C. Wright, and T. J. DeVries, Dept. of Animal Biosciences, University of Guelph, Guelph, ON, Canada, Dept. of Population Medicine, University of Guelph, Guelph, ON, Canada, Fac. of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.

Comparison of Johne's disease prevalence on organic and conventional dairy farms in Pennsylvania.
M.-E. Fecteau*, T. L. Fyock, H. W. Aceto, H. J. Karreman, and R. W. Sweeney, Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA.

Dry cow treatment, antimicrobial residues in colostrum, and resistance in new born calves.
A. J. Veltushi*, A. M. Gonggrijp, A. E. Heuvelink, C. Kappert, D. Mevius, and T. Lam, GD Animal Health, Deventer, the Netherlands, Utrecht University, Department Farm Animal Health, Utrecht, the Netherlands.

Lameness on Canadian dairy farms: Measured and farmer-perceived prevalence, and associations with management practices.
S. L. Croyle*, C. Bauman, S. J. LeBlanc, and D. F. Kelton, University of Guelph, Guelph, ON, Canada.

Exopolysaccharides produced by lactic starter cultures impact biofilm formation on separation membranes.
N. Garcia-Fernandez, S. Anand, and A. Hassan*, Daisy Brand, Garland, TX, South Dakota State University, Brookings, SD.

The role of quorum sensing in biofilm formation by bacteria in the dairy processing environment.
M. Griffiths*, University of Guelph, Guelph, ON, Canada.

The role of biofilms in the quality of dairy products in whey processing plants.
S. Flint*, S. N. M. Zain, and R. Bennett, Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.

Controlling microbial biofilms.
P. S. Stewart*, Montana State University, Bozeman, MT.

Features of reverse osmosis membrane treatment systems that influence biofouling.

Closing remarks.
Ashraf Hassan.
Dairy Foods II: Cheese
Chair: Lloyd Metzger, South Dakota State University
Room 328

9:30 AM 294 Mid-infrared analysis of Cheddar cheese.
B. Margolies* and D. Barbano, Cornell University, Ithaca, NY.

9:45 AM 295 Cholesterol, fatty acid profile, and mineral content of commercial cheeses predicted by near-infrared transmittance spectroscopy.
C. L. Manuelian*, S. S. Curró, M. Penasa, and M. De Marchi, University of Padova, Legnaro, Padova, Italy.

10:00 AM 296 Is fatty acid composition of retail cheeses influenced by the scale of production?
E. Vargas-Bello-Pérez*, C. Geldsetzer-Mendoza*, M. S. Morales*, P. Toro-Mujica*, M. A. Fellenberg†, R. A. Ibáñez†, and P. Gómez-Cortés†, 1Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile; 2Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile; 3Instituto de Investigación en Ciencias de la Alimentación, Universidad Autónoma de Madrid, Nicolás Cabrera 9, Madrid, Spain.

10:15 AM 297 Impact of green tea polyphenols on functionality and sensory acceptability of buffalo milk Cheddar cheese.
M. A. Murtaza*, I. Hafiz‡, and M. Anees-ur-Rehman‡, 1Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan; 2Department of Chemistry, University of Agriculture, Faisalabad, Pakistan.

10:30 AM 298 Effect of pH modification on chymosin-induced coagulation of concentrated casein micelles suspensions.
Z. Zhao*‡ and M. Corredig*†, 1University of Guelph, Guelph, ON, Canada; 2Gay Lea Foods, Guelph, ON, Canada.

10:45 AM 299 Effects of different commercial proteolytic enzymes used in the production of enzyme-modified cheese on the cheese ripening parameters.
G. Goce*, P. Salum†, D. Bas‡, P. Kendirci‡, and Z. Erbay*, 1Department of Food Engineering, Institute of Natural and Applied Sciences, Adana Science and Technology University, Adana, Turkey; 2Department of Food Engineering, Institute of Natural and Applied Sciences, Adana Science and Technology University, Adana, Turkey; 3Department of Food Engineering, Faculty of Engineering, Cankiri Karatekin University, Cankiri, Turkey; 4Department of Gastronomy and Culinary Arts, Faculty of Tourism, Katip Çelebi University, İzmir, Turkey; 5Department of Food Engineering, Faculty of Engineering and Natural Sciences, Adana Science and Technology University, Adana, Turkey.

Growth and Development I
Chair: Michael Steele, University of Alberta
Room 317

9:30 AM 300 Evaluating the effect of protein source and micro-encapsulated sodium butyrate in starter mixtures on gastrointestinal tract development of dairy calves.
K. Burakowska*, M. Przybyło*, G. Penner†, and P. Górka‡, 1University of Saskatchewan, Saskatoon, SK, Canada; 2University of Agriculture in Krakow, Krakow, Poland.

9:45 AM 301 Effects of feeding milk replacer with increased fat on intake and performance of calves during the summer months in northern New York.
K. Hultquist*, C. Ballard, and C. Havekes, William H. Miner Agricultural Research Institute, Chazy, NY.

10:00 AM 302 Effects of prebiotic and phytochemical milk replacer additives on growth and feed utilization of Holstein rearing calves.
T. Wilke*‡ and H. Westendarp‡, 1Dr. Eckel Animal Nutrition GmbH & Co KG, Niederzissen, Germany; 2Faculty of Agricultural Sciences and Landscape Architecture, University of Applied Sciences, Osnabrück, Germany.
16S rRNA gene sequencing reveals the microbiome of the virgin and pregnant bovine uterus.
S. G. Moore*1, A. C. Ericsson23, S. E. Poock4, P. Melendez4, and M. C. Lucy5, 1Division of Animal Sciences, University of Missouri, Columbia, MO, 2Department of Veterinary Pathology, University of Missouri, Columbia, MO, 3University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, 4College of Veterinary Medicine, University of Missouri, Columbia, MO.

9:45 AM

Uterine microbiome during the first week after calving is associated with differences in milk production in the absence of overt signs of disease.
S. G. Moore*1, A. C. Ericsson23, S. E. Poock4, and M. C. Lucy5, 1Division of Animal Sciences, University of Missouri, Columbia, MO, 2Department of Veterinary Pathology, University of Missouri, Columbia, MO, 3University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, 4College of Veterinary Medicine, University of Missouri, Columbia, MO.

10:00 AM

Discovering neutrophil extracellular traps in the bovine endometrium and the effects of feeding a rumen-protected methionine on plasma amino acid concentrations and uterine characteristics.
S. L. Stella*1, D. A. V. Acosta2, C. Skenandore1,3, Z. Zheng, A. Steelman1, D. Luchini4, and F. C. Cardoso5, 1University of Illinois, Urbana, IL, 2The Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia, 3Texas A&M College of Veterinary Medicine, College Station, TX, 4Adisseo NACA, Alpharetta, GA.

10:15 AM

Ovarian follicular dynamics, endocrinology, and estrous behaviour in repeat breeder cattle.
P. Sood*1, H. D. Sarma2, P. K. Dogra2, V. Kadwad3, and S. S. Sachdev2, 1Dr G C Negi College of Veterinary and Animal Sciences, Palampur, Himachal Pradesh, India, 2Bhabha Atomic Research Centre, Mumbai, Maharashtra, India, 3Board of Radiation and Isotope Technology, Mumbai, Maharashtra, India.

10:30 AM

Preovulatory follicle characteristics and oocyte competence in repeat breeder dairy cows.
P. Sood*12, M. Zachut2, I. Dekel2, H. Dube2, and U. Moallem2, 1Dr G C Negi College of Veterinary and Animal Sciences, Palampur, Himachal Pradesh, India, 2Department of Ruminants Science, ARO, Volcani Center, Rishon LeZion, Israel.

10:45 AM

Fertility, concentrations of steroid hormones, and antioxidant enzymes during transition period in dairy cows fed organic trace minerals supplement.
V. Kanhuthasaeng*, C. Navanukraw, A. Kraisoon, S. Tongrueng, and T. Bunma, Agricultural Biotechnology Research Center for Sustainable Economy (ABRCSE), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.

11:00 AM

The association between cervical and uterine size at 4 weeks postpartum and fertility in Jersey cows.
S. Poock1, P. Melendez*, M. Caldeira2, S. Moore2, L. Mayo3, R. Molina-Coto2, and M. Lucy2, 1College of Veterinary Medicine, University of Missouri, Columbia, MO, 2Department of Animal Sciences, University of Missouri, Columbia, MO.

11:15 AM

Pre-ovulatory follicular size and the subsequent conception rate in dairy cows.
R. Mur-Novales*12, I. Garcia-Ispierto12, B. Serrano-Pérez12, V. Cabrera2, and F. López-Gatius3, 1Department of Animal Science, University of Lleida, Lleida, Spain, 2Agrotecnio Center, Lleida, Spain, 3University of Wisconsin-Madison, Madison, WI.

11:30 AM

Associations between inter-service interval and fertility in dairy cows.
J. G. Remnant*, M. J. Green, J. N. Huxley, and C. D. Hudson, University of Nottingham, Sutton Bonington, Loughborough, UK.

11:45 AM

Chronic lipopolysaccharide infusion has no impact on dominant follicular size but affects 17β-estradiol in lactating dairy cows.

12:00 PM

Measurement of ISG15 in milk somatic cells for pregnancy diagnosis 18, 20, and 22 days after timed artificial insemination (TAI).
L. M. Mayo*1, R. Rodrigues1, R. Molina Coto1, S. G. Moore1, S. E. Poock1, and M. C. Lucy1, 1Division of Animal Sciences, University of Missouri, Columbia, MO, 2Veterinary Medicine Extension, University of Missouri, Columbia, MO.
Effects of nerve growth factor-β on luteal function and markers of conceptus development in cattle.
J. S. Stewart¹, V. R. G. Mercadante², I. F. Canisso¹, and F. S. Lima*¹, ¹University of Illinois, Urbana-Champaign, IL, ²Virginia Tech University, Blacksburg, VA.

Precision Dairy Farming Symposium:
Precision Dairy (PD) Management Today
Chair: Marcia Endres, University of Minnesota
Sponsor: Precision Dairy Farming Association
Room 319-320

Precision dairy research and user update: Dairy cattle reproduction.
R. L. A. Cerri*¹, B. F. Silper¹, T. A. Burnett¹, A. M. L. Madureira¹, L. B. Polsky¹, M. Kaur¹, R. F. Cooke², and J. L. M. Vasconcelos³, ¹Applied Animal Biology, University of British Columbia, Vancouver, BC, Canada, ²EOARC, Oregon State University, Burns, OR, ³Department of Animal Production, Sao Paulo State University, Botucatu, SP, Brazil.

Dairy cattle health and welfare in the precision dairy world.
D. Kelton*, University of Guelph, Guelph, ON, Canada.

Q&A session

Producer experience with precision dairy.
B. Biehl*, Corner View Farm, Kutztown, PA.

Precision dairy economics.
C. Kamphuis*², H. Hogevseen¹,³, and M. van der Voort¹, ¹Business Economics Group, Wageningen University and Research, Wageningen, the Netherlands, ²Animal Breeding and Genetics, Wageningen University and Research, Wageningen, the Netherlands, ³Department of Farm Animal Health, Faculty of Veterinary Health, Utrecht University, Utrecht, the Netherlands.

Q&A session

Production, Management, and the Environment III
Chair: K. Marie Krause, West Virginia University, Morgantown
Room 329

Validation of an accelerometer to monitor rumination, eating and activity in an organic grazing dairy herd.
G. Pereira*¹, B. Heins¹, and M. Endres², ¹University of Minnesota, West Central Research and Outreach Center, Morris, MN, ²University of Minnesota, Department of Animal Science, St. Paul, MN.

Milking efficiency in AMS—Effects of teaser feed and take-off level.
S. Ferneborg³, R. A. Black¹, S. Agenäs¹, M. Thulin²,¹, K. Svennersten-Sjauja³¹, E. Ternman*¹, and P. D. Krawczel¹, ¹Swedish University of Agricultural Sciences, Department of Animal Nutrition and Management, Uppsala, Sweden, ²Uppsala University, Department of Statistics, Uppsala, Sweden, ³The University of Tennessee, Department of Animal Science, Knoxville, TN.

Daily milk production, number of milkings, feed consumption and rumination time for cows in robotic milking systems in the United States.
J. M. Siewert*¹, J. A. Saller², and M. I. Endres¹, ¹University of Minnesota, St. Paul, MN, ²University of Minnesota Extension, St. Cloud, MN.
Economic and environmental performance of traditional and grass-fed organic dairies using the Integrated Farm System Model.
R. A. V. Santana1, A. F. Brito*2, V. E. Cabrera3, F. A. Barbosa4, A. K. Hoshide5, A. F. Benson6, A. N. Hafla7, H. M. Darby8, K. J. Soder9, and R. Kersbergen1, 1
Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais–Campus Arinos, Arinos, MG, Brazil, 2University of New Hampshire; Department of Biological Sciences, Durham, NH, 3University of Wisconsin; Department of Dairy Sciences, Madison, WI, 4Universidade Federal de Minas Gerais; Departamento de Zootecnia, Belo Horizonte, MG, Brazil, 5University of Maine; School of Economics, Orono, ME, 6Cornell University; Cornell Cooperative Extension, Cortland, NY, 7USDA-ARS; Pasture Systems and Watershed Management Research Unit, University Park, PA, 8University of Vermont; Department of Plant and Soil Sciences, St. Albans, VT, 9University of Maine; Cooperative Extension and School of Food and Agriculture, Orono, ME.

Comparison of fatty acid profiles and consumer acceptability of dairy steers grazing two cover cropping systems.
H. Phillips*1, B. Heins1, K. Delate2, and B. Turnbull2, 1University of Minnesota, Morris, MN, 2Iowa State University, Ames, IA.

Relationships between protein and energy consumed from milk replacer and starter and first lactation production performance of Holstein dairy cows.
J. Rauba*1, B. Heins2, H. Chester-Jones3, D. Ziegler3, and N. Broadwater4, 1Milk Specialties Global, Eden Prairie, MN, 2University of Minnesota West Central Research and Outreach Center, Morris, MN, 3University of Minnesota Southern Research and Outreach Center, Waseca, MN, 4University of Minnesota Extension, Rochester, MN.

Relationships between protein and energy consumed from milk replacer and starter and growth for Holstein dairy calves.
J. Rauba*1, B. Heins2, H. Chester-Jones3, D. Ziegler3, and N. Broadwater4, 1Milk Specialties Global, Eden Prairie, MN, 2University of Minnesota West Central Research and Outreach Center, Morris, MN, 3University of Minnesota Southern Research and Outreach Center, Waseca, MN, 4University of Minnesota Extension, Rochester, MN.

Effects of dietary nonfiber carbohydrate content on lactation performance and rumen fermentation characteristics in mid-lactation dairy cows receiving corn stover.

Ruminant Nutrition III
Chair: Diwakar Vyas, University of Florida
Room 310-311

Comparison of Molly and Karoline models to predict methane emissions in cattle.
M. Kass1, M. D. Hanigan2, M. Ramin3, and P. Huhtanen*3, 1Estonian University of Life Science, Tartu, Estonia, 2Virginia Tech University, Blacksburg, VA, 3Swedish University of Agricultural Sciences, Umeå, Sweden.

Development of equations to predict dry matter intake of lactating cows using animal factors.
R. Souza*1, R. Tempelman1, D. Spurlock2, E. Connor3, L. Armentano4, M. Allen5, and M. VandeHaar1, 1Michigan State University, East Lansing, MI, 2Iowa State University, Ames, IA, 3USDA, Beltsville, MD, 4University of Wisconsin, Madison, WI.

Development of equations to predict dry matter intake of lactating cows using factors related to the filling effect of rations.
D. O. Sousa, M. J. VandeHaar, and M. S. Allen*, Michigan State University, East Lansing, MI.

A meta-analysis of starch concentration in dairy calf feeds on growth and digestibility.
W. Hu, T. M. Hill*, F. X. Suarez-Mena, T. S. Dennis, J. D. Quigley, and R. L. Schlotterbeck, Nurture Research Center, Provimi, Brookville, OH.
10:30 AM 331 Effects of transition nutrition on the fertility of lactating dairy cattle: A meta-analysis.
R. M. Rodney1,2, P. Celli3,4, W. Scott1, K. Breinhild1, and I. J. Lean*1,2, 1Scibus, Camden, NSW, Australia, 2School of Life and Environmental Sciences, Faculty of Veterinary Science, University of Sydney, Camden, NSW, Australia, 3DSM Nutritional Products, Animal Nutrition and Health, Columbia, MD, 4Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.

10:45 AM 332 Repeatability of residual feed intake across diets with two levels of dietary protein content.
E. Liu* and M. J. VandeHaar, Michigan State University, East Lansing, MI.

11:00 AM 333 Early lactation meal size, but not meal frequency, is positively associated with whole-lactation milk production and retention in the dairy herd.
A. J. Carpenter, M. Wood, and B. J. Bradford*, Kansas State University, Manhattan, KS.

11:15 AM 334 Effects of particle size and undigested neutral detergent fiber source on dry matter intake, milk production and composition, and chewing behavior of dairy cows.
M. D. Miller*, H. M. Dann, K. W. Cotanch, and R. J. Grant, William H. Miner Agricultural Research Institute, Chazy, NY.

11:30 AM 335 Impact of ration nutrient density on the energy balance and inflammatory response of dairy cows during and after dry-off.
K. M. Dancy*, E. S. Ribeiro, and T. J. DeVries, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.

11:45 AM 336 Impact of straw particle size on behavior, health, and production of early lactation dairy cows.
R. E. Coon*, T. F. Duffield, and T. J. DeVries, 1Dept. of Animal Biosciences, University of Guelph, Guelph, ON, Canada, 2Dept. of Population Medicine, University of Guelph, Guelph, ON, Canada.

12:00 PM 337 Effects of dietary chromium on circulating energetic metabolites and leukocyte patterns following a lipopolysaccharide challenge in lactating cows.
E. A. Horst*, S. K. Kvidera1, E. J. Mayorga1, C. S. Housie1, M. Al-Qaisi1, M. J. Dickson1, J. A. Ydstie2, H. A. Ramirez1, K. E. Griswold1, and L. H. Baumgard1, 1Iowa State University, Ames, IA, 2Kemin Industries Inc., Des Moines, IA.

12:15 PM 338 Effects of dietary chromium on energetic requirements of an activated immune system following a lipopolysaccharide challenge in lactating cows.
E. A. Horst*, S. K. Kvidera1, E. J. Mayorga1, C. S. Housie1, M. Al-Qaisi1, M. J. Dickson1, J. A. Ydstie2, H. A. Ramirez1, K. E. Griswold1, and L. H. Baumgard1, 1Iowa State University, Ames, IA, 2Kemin Industries Inc., Des Moines, IA.

Small Ruminant
Chair: David L. Thomas, University of Wisconsin-Madison
Room 318

9:30 AM 339 The effects of prepartum fatty acid supplementation on colostrum and milk fatty acid profiles and production.
D. Coleman* and A. Relling, The Ohio State University, OARDC, Wooster, OH.

9:45 AM 340 Why and when should dairy ewes be shorn: Open, pregnant, or neither?
G. Caja*, L. Cordón1, S. González-Luna2, A. A. K. Salama1, X. Such1, E. Albanell1, A. Contreras-Jodar1, and J. de Lucas2, 1University Autonoma of Barcelona, Bellaterra, Barcelona, Spain, 2University Nacional Autonoma of Mexico, Cuautitlán, México.

10:00 AM 341 Net protein and energy requirements for growth according to the degree of maturity of Saanen goats.
I. A. M. A. Teixeira*, A. P. Souza1, N. R. St-Pierre2, M. H. M. R. Fernandes1, A. K. Almeida1, J. A. C. Vargas1, and K. T. Resende1, 1Universidade Estadual Paulista (Unesp), Jaboticabal, Sao Paulo, Brazil, 2Ohio State University, Columbus, OH.

10:15 AM 342 Effects of dietary nitrogen sources and nisin on nutrient digestibility, rumen fermentation, nitrogen utilization, plasma metabolites, and growth performance in growing lambs.
J. Shen*1,2, Y. Chen1, W. Zhu1, and Z. Yu1, 1Nanjing Agricultural University, Nanjing, Jiangsu, China, 2The Ohio State University, Columbus, OH.
Effects of algae supplementation on milk performance and rumen fermentation in lactating Xinong Saanen dairy goats.

Variability of rumen acidosis and intake behavior of dairy goats submitted to a dietary acidogenic challenge.

Evaluation of two bulk tank milk paratuberculosis tests in dairy goats and sheep.

C. Bauman*, A. Jones-Bitton, J. Jansen, P. Menzies, and D. Kelton. 1University of Guelph, Guelph, ON, Canada, 2Ontario Ministry of Agriculture Food and Rural Affairs, Guelph, ON, Canada.

ADSA-American Society for Nutrition Symposium:

Does the Amount and Type of Fat That You Eat Matter?

Chair: Donald C. Beitz, Iowa State University

Room 319-320

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00 PM</td>
<td>A rational evaluation of the dairy fat debate. L. Baumgard*, Iowa State University, Ames, IA.</td>
</tr>
<tr>
<td>2:45 PM</td>
<td>Dietary fats: The saturated vs. unsaturated controversy. G. D. Lawrence*, Long Island University, Brooklyn, NY.</td>
</tr>
<tr>
<td>3:30 PM</td>
<td>Scientific evidence and gaps: A systematic review of dietary cholesterol and cardiovascular disease. G. Raman*, Tufts Medical Center, Boston, MA.</td>
</tr>
<tr>
<td>4:15 PM</td>
<td>Nutritional significance of milk fat membrane composition and structure. R. Jimenez-Flores*, The Ohio State University, Columbus, OH.</td>
</tr>
</tbody>
</table>

Animal Behavior and Well-Being II

Chair: Peter Krawczel, University of Tennessee

Room 321

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00 PM</td>
<td>Effects of stocking density and feed access on short-term responses in ruminal fermentation of Holstein dairy cows. M. A. Campbell*, H. M. Dann, P. D. Krawczel, and R. J. Grant. 1University of Vermont, Burlington, VT, 2William H. Miner Agricultural Research Institute, Chazy, NY, 3University of Tennessee, Knoxville, TN.</td>
</tr>
<tr>
<td>2:15 PM</td>
<td>Effects of stocking density and feed availability on short-term lying, feeding, and rumination responses of Holstein dairy cows. M. A. Campbell*, H. M. Dann, P. D. Krawczel, and R. J. Grant. 1University of Vermont, Burlington, VT, 2William H. Miner Agricultural Research Institute, Chazy, NY, 3University of Tennessee, Knoxville, TN.</td>
</tr>
<tr>
<td>2:45 PM</td>
<td>Evaluation of activity, feeding time, lying time, rumination time, reticulorumen temperature, and milk yield, conductivity, lactose, protein, and fat to detect subclinical mastitis. A. E. Stone*, B. W. Jones, I. C. Tsai, L. M. Mayo, and J. M. Bewley. 1Mississippi State University, Starkville, MS, 2University of Kentucky, Lexington, KY.</td>
</tr>
</tbody>
</table>

3:15 PM 355 Detection of lame cattle using behavioral and physiological changes as measured by precision dairy monitoring technologies. B. W. Jones*, L. M. Mayo1, I. C. Tsai1, A. E. Stone1, Y. M. Chang2, and J. M. Bewley1, 1University of Kentucky, Lexington, KY, 2Royal Veterinary College, London, UK.

3:30 PM 356 Facial biometrics as predictors of productivity, fertility, and health traits in elite dairy sires. C. McVey* and P. Pinedo, Colorado State University, Fort Collins, CO.

Animal Health Symposium:
Antibiotics and Animal Agriculture: Outlook for the Upcoming Years
Chair: Michael Ballou, Texas Tech University
Sponsor: BIOMIN America
Room 301-302

2:00 PM 357 How has the veterinary feed directive changed dairy production medicine?
P. J. Gorden*, Iowa State University, Ames, IA.

2:45 PM 358 The status of antimicrobials for dairy practice: An update on efficacy and resistance.
P. Ruegg*, University of Wisconsin, Madison, WI.

3:30 PM 359 Strategies for reducing antibiotic use in dairy cattle.

Animal Health IV
Chair: Barry Bradford, Kansas State University
Room 303

2:00 PM 360 Genome, metabolome, and microbiome associations in grain- and sugar- challenged dairy heifers.
H. M. Golder*1,2, J. Thomson3, S. Denman4, C. S. McSweeney5, and I. J. Lean1,2, Scibus, Camden, NSW, Australia, 1Dairy Science Group, Faculty of Veterinary Science, The University of Sydney, Camden, NSW, Australia, 2Montana State University, Department of Animal and Range Sciences, Bozeman, MT, 4CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia.

2:15 PM 361 Grain-induced subacute ruminal acodosis (SARA) alters epimural microbiota of dairy cows throughout the digestive tract.
J. C. Plaizier*, A. M. Danscher2, P. A. Azevedo1, S. Li1, P. H. Andersen3, and E. Khaipour1, 1University of Manitoba, Winnipeg, Canada, 2University of Copenhagen, Copenhagen, Denmark, 3Swedish Agricultural University, Uppsala, Sweden.

2:30 PM 362 Associations of productivity and supplemental feed consumption with subclinical ketosis in dairy cows in robotic milking herds.
K. J. Sparkman, M. T. M. King*, and T. J. DeVries, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.

2:45 PM 363 Postpartal subclinical ketosis can be predicted by monitoring prepartal standing behavior in transition dairy cows. S. Rodriguez-Jimenez*, K. J. Haerr2, E. Trevisi1, J. S. Osorio1, J. J. Loor2, and F. C. Cardoso1, 1South Dakota State University, Brookings, SD, 2University of Illinois, Champaign, IL, 3Università Cattolica del Sacro Cuore, Milan, Italy.
Glucagon-like peptide 2 administration improves biomarkers of inflammation and intestinal morphology in feed restricted lactating Holstein cows.
S. K. Kvidera*1, E. A. Horst1, M. V. Sanz Fernandez1, M. Abuajamieh1, S. Ganesan1, P. J. Gorden1, H. B. Green2, K. M. Schoenberg2, W. E. Trout2, A. F. Keating3, and L. H. Baumgard1, 1Iowa State University, Ames, IA, 2Elanco Animal Health, Greenfield, IN.

Sensitivity and specificity of fine needle aspiration cytology and histopathology for fatty liver screening in dairy cattle.
P. Melendez*1, M. Whitney1, F. Williams1, P. Pinedo2, D. Manriquez1, S. Moore3, M. Lucy4, P. Pithua5, and S. Poock1, 1College of Veterinary Medicine, University of Missouri, Columbia, MO, 2Department of Animal Sciences, Colorado State University, Fort Collins, CO, 3Department of Animal Sciences, University of Missouri, Columbia, MO.

Factors associated with subclinical hypocalcemia at calving on multiparous Jersey cows.
A. Valldecabres*1, J. A. A. Pires2, and N. Silva-del-Río1, 1Veterinary Medicine Teaching and Research Center, University of California Davis, Tulare, CA, 2Unité Mixte de Recherche sur les Herbivores, INRA, VetAgro Sup, Saint-Genes-Champanelle, France.

Effects of chloride and sulfate-based diets fed to grazing prepartum dairy cows on postpartum plasma calcium.
P. Melendez*1, V. Zaror2, P. Gaul2, S. Poock1, and J. Goff3, 1College of Veterinary Medicine, University of Missouri, Columbia, MO, 2Tribute Dairy, Benton, MO, 3College of Veterinary Medicine, Iowa State University, Ames, IA.

Supplementing phytogenics and autolyzed yeast in concentrate-rich diets modulate chewing behavior and rumen pH in dairy cows.
I. Kröger1, V. Neubauer1, E. Humer1, N. Reisinger*, and Q. Zebeli1, 1Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria, 2Biomin Research Center, Technopark 1, Tulln, Austria.

Mycotoxin survey in 2016 US corn.
P. N. Gott*, E. G. Hendel1, T. Jenkins2, and G. R. Murugesan1, 1Biomin America Inc., San Antonio, TX, 2Biomin Holding GmbH, Getzersdorf, Austria.

Mycotoxin survey in US corn distillers dried grains with solubles.
P. N. Gott*, E. G. Hendel1, T. Jenkins2, and G. R. Murugesan1, 1Biomin America Inc., San Antonio, TX, 2Biomin Holding GmbH, Getzersdorf, Austria.

Breeding and Genetics II:
Health
Chair: Christian Maltecca, North Carolina State University
Room 324

Calving ease, stillbirth, and gestation length of ProCROSS calves compared to pure Holsteins in two research herds.
E. S. Houdek*, A. R. Hazel1, B. J. Heins2, and L. B. Hansen1, 1University of Minnesota, Saint Paul, MN, 2West-Central Research and Outreach Center, Morris, MN.

The Finnish dairy farmers’ usage of AI bulls: Variation in realized trait preferences.
E. P. Paakala*1,2, D. Martín-Collado1, A. Mäki-Tanila1, and J. Juga2, 1University of Helsinki, Department of Agricultural Sciences, Helsinki, Finland, 2Faba Co-op, Vantaa, Finland, 3Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain.

Comparative performance of Holstein-Friesian dairy cows of contrasting Economic Breeding Index.
M. O’ Sullivan*1,2, S. McParland1, K. M. Pierce2, and F. Buckley1, 1Teagasc Moorepark Animal & Grassland Research and Innovation Centre, Fermoy, Cork Ireland, 2School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
Combined use of test-day model and principal component analysis to obtain heat tolerance phenotypes in dairy cattle.
N. P. P. Macciotta*,1, S. Biffani2, U. Bernabucci2, N. Lacetera2, A. Vitali1, P. Ajmone-Marsan4, and A. Nardone1. 1University of Sassari, Sassari, Italy, 2Associazione Italiana Allevatori, Rome, Italy, 3University of Tuscia, Viterbo, Italy, 4University of the Sacred Heart, Piacenza, Italy.

F. Malchiodzi1,3, D. A. L. Lourenco2, I. Misztal2, A.-M. Christen3, J. Jamrozik1,4, F. S. Schenkel1, D. F. Kelton5, and F. Miglior1,4. 1Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada, 2Department of Animal and Dairy Science, University of Georgia, Athens, GA, 3Valacta, Sainte-Anne-De-Bellevue, QC, Canada, 4Canadian Dairy Network, Guelph, ON, Canada, 5Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.

Genetic control of health treatment cost and the correlation of health treatment cost with production and conformation of first lactation Holstein cows.
M. R. Donnelly*,1, A. R. Hazel1, B. J. Heins2, and L. B. Hansen1. 1University of Minnesota, St. Paul, MN, 2West-Central Research and Outreach Center, Morris, MN.

Development of genomic evaluations for direct measures of health in US Holsteins and their correlations with fitness traits.

Genomic analysis of ketosis susceptibility in Jersey cattle.

Genome-wide association study for clinical mastitis, metritis, and ketosis in US Holstein cattle.
A. Sigdel*,1, C. K. Mak2,3, R. Abdollahi-Arpanahi1,3, K. Galvão1, and F. Peñagaricano1. 1University of Florida, Gainesville, FL, 2National Taiwan University, Taipei, Taiwan, 3University of Tehran, Tehran, Iran.

Genomic evaluation for wellness traits with very large number of genotypes.

Analysis of the genetic trends for wellness traits in US Holstein.

Dairy Foods Symposium:
Emerging Research and Insights to Drive Innovations in Fluid Milk
Chair: Rohit Kapoor, National Dairy Council
Sponsor: National Dairy Council
Room 327

Opening remarks.
Rohit Kapoor, National Dairy Council.

Market insights and consumer trends in fluid milk and beverages.
M. Wilcox*, Significant Outcomes LLC, Pandora, OH.

The influence of protein and fat on sensory properties and consumer perception of fluid milk.
M. A. Drake* and D. M. Barbano,1 North Carolina State University, Raleigh, NC, 2Cornell University, Ithaca, NY.
3:15 PM 385 Preserving milk freshness in retail environment.
S. E. Duncan*, Virginia Tech, Blacksburg, VA.

3:45 PM 386 Building consumer trust: Milk composition as a predictor of sustainability and animal health.
D. M. Barbano*, H. M. Dann†, and R. J. Grant‡, †Cornell University, Ithaca, NY, ‡Miner Institute, Chazy, NY.

4:15 PM 387 Impact of post-pasteurization contamination on milk quality.
N. Martin*, A. Alles, S. Reichler, K. Boor, and M. Wiedmann, Cornell University, Ithaca, NY.

4:45 PM 388 Closing remarks.
Rohit Kapoor.

Dairy Foods III:
Microbiology
Chair: Mark Johnson, Wisconsin Center for Dairy Research
Room 328

2:00 PM 388 Genomics of Advenella, Psychro bacter, and Psychro flexus strains from the surface of Austrian artisanal hard cheeses: insights into ripening and flavor generation.
S. Schmitz-Esser*1,2, E. Nischler2, M. Dzieciol2, E. Mann2, and M. Wagner2, 1Iowa State University, Department of Animal Science, Ames, IA, 2University of Veterinary Medicine Vienna, Institute for Milk Hygiene, Vienna, Austria.

2:15 PM 389 Lactoferrin protect Caco-2, HEK, Hep-G2 and SK-N-SH cell lines inhibits aflatoxin-induced cytotoxicity and oxidative DNA damage.
H. Zhang1,4, N. Zheng1,2, J. Liu1, Y. N. Gao1,2, and J. Q. Wang*1,2, 1Ministry of Agriculture-Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 2Ministry of Agriculture-Laboratory of Quality and Safety Risk Assessment for Dairy Products, Beijing, China, 3Ministry of Agriculture-Milk and Dairy Product Inspection Center, Beijing, China, 4College of Food Science & Engineering, Ji Lin University, Chang Chun, China, 5China National Research Institute of Food and Fermentation Industries, Beijing, China.

2:30 PM 390 Impact of the addition of exopolysaccharides containing β (1→4), and β (1→3) linkages isolated from Streptococcus thermophilus into milk prior to fermentation on physical and rheological properties of fermented milk gels.
S. N. Khanal*1 and J. A. Lucey1,2, 1University of Wisconsin, Department of Food Science, Madison, WI, 2Wisconsin Center for Dairy Research, Madison, WI.

2:45 PM 391 Transcriptomic analysis of high exopolysaccharide-producing dairy starter bacterium Streptococcus thermophilus ASCC 1275 in milk.
Q. Wu and N. P. Shah*, The University of Hong Kong, Pok Fu Lam Road, Hong Kong.

3:00 PM 392 Un-shielding biofilm forming bacteria of protective extracellular matrix provides novel mean to improve dairy products microbial quality.
M. Shemesh*, N. Ben-Ishay1,2, D. Inbar1,2, R. Reifen2, and D. Steinberg1, 1Department of Food Quality and Safety, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization, Rishon LeZion, Israel, 2The Robert H. Smith Faculty of Agriculture, Food and Environment, The Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel, 3Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel.
Growth and Development Symposium:
Microbial Endocrinology in Ruminant Growth and Development
Chair: Kristy Daniels, Virginia Tech
Sponsor: Pancosma
Room 315-316

2:00 PM 393 An introduction and overview of the emerging field of microbial endocrinology.
M. Lyte*, Iowa State University, Ames, IA.

2:45 PM 394 Microbes, epithelial cells and chemical signals in the digestive tract.
D. R. Brown*, University of Minnesota, Department of Veterinary and Biomedical Sciences, St. Paul, MN.

3:30 PM 395 Mining metagenomic and transcriptomic data for clues about microbial metabolic functions in ruminants.
F. Li, A. Neves, B. Ghoshal, and L. L. Guan*, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.

Lactation Biology I
Chair: Jimena Laporta, University of Florida
Room 326

2:00 PM 396 The effects of serotonin on parathyroid hormone-related peptide and calcium transport in bovine mammary epithelium.
L. A. Amundson* and L. L. Hernandez, University of Wisconsin-Madison, Madison, WI.

2:15 PM 397 The mammary gland calcium axis responds to 5-HTP in transition period dairy cows.
S. R. Weaver*, N. L. Maerz, and L. L. Hernandez, University of Wisconsin-Madison, Madison, WI.

2:30 PM 398 Short-term effects of cabergoline for the inhibition of milk secretion in dairy ewes.
G. Caja*, A. A. K. Salama1, A. Elhadi1, X. Such1, and A. I. de Prado2, 1University Autonoma of Barcelona, Bellaterra, Barcelona, Spain, 2Ceva Santé Animale, Libourne, France.

2:45 PM 399 Increased expression of glucose transporters in the small intestine and mammary gland of lactating versus dry dairy cows.
C. K. Reynolds*, A. W. Moran2, L. A. Crompton1, and S. P. Shirazi-Beechey2, 1School of Agriculture, Policy and Development, University of Reading, Reading, UK, 2Epithelial Function and Development Group, University of Liverpool, Liverpool, UK.

3:00 PM Break

3:15 PM 400 Impact of heat stress during the early and late dry period on subsequent performance in dairy cattle.

3:30 PM 401 Nutritional and cooling strategies to alter mammary involution and development of heat stressed dry cows.

3:45 PM 402 Effect of heat stress and methionine or arginine supplementation on mTOR signaling in bovine mammary cells.
A. A. K. Salama*, L. Wang2, M. Duque1, and J. J. Loor1, 1Group of Ruminant Research (G2R), Universitat Autonoma de Barcelona, Bellaterra, Spain, 2Department of Animal Science, Southwest University, Rongchang, Chongqing, China, 3Grupo de Investigacion Biogenesis and GRICA. Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellin, Colombia, 4Department of Animal Sciences, University of Illinois, Urbana, IL.

4:00 PM 403 Methionyl-methionine restored prolificacy and promoted milk protein synthesis in mice fed with methionine deficiency diet.
Methionyl-methionine promotes milk protein synthesis by enhancing cell proliferation and activating mTOR signaling pathway in bovine mammary gland epithelial cells.

The effects of feeding levels on the growth, reproductive performances and mammary gland development in early weaned goats.
C. Panzuti*,1,2, C. Duvaux-Ponter3, G. Mandrile1, and F. Dessauge1, 1PEGASE, Agrocampus Ouest, INRA, Rennes, France, 2MixScience, Bruz, France, 3MoSAR, INRA, AgroParisTech, Paris, France.

Postpartum calf management influences dam colostrum components.
R. R. Cockrum*, H. C. Cunningham1, K. J. Austin1, E. M. Bart1, and K. M. Cammack1, 1Virginia Polytechnic Institute and State University, Blacksburg, VA, 2University of Wyoming, Laramie, WY, 3South Dakota State University, Rapid City, SD.

Production, Management, and the Environment IV
Chair: Vinicius Moreira, Louisiana State University
Room 329

Evaluation and comparison of dairy cow dry matter intake prediction models recommended by the intergovernmental panel on climate change.
R. A. Jayasooriya*1 and E. Kebreab2, 1Department of Animal Science, Iowa State University, Ames, IA, 2Department of Animal Science, University of California-Davis, Davis, CA.

County-level gridded livestock methane emissions for the contiguous United States.
A. N. Hristov*,1, M. Harper1, R. Meinen1, R. Day2, J. Lopes1, T. Ott1, A. Venkatesh1, and C. A. Randles3, 1Department of Animal Science, The Pennsylvania State University, University Park, PA, 2Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, 3ExxonMobil Research and Engineering Company, Annandale, NJ.

Cow, herd, and farm level productivity, efficiency, and greenhouse gas emission of different strategies for extended lactation.
J. O. Lehmann*, L. Mogensen, and T. Kristensen, Department of Agroecology, Aarhus University-Foulum, Tjele, Denmark.

Evaluating the effect of herb structure and milk production improvement on farm profitability and enteric methane emission.
D. Liang*,1, J. Tricarico2, K. Weigel1, and V. Cabrera1, 1University of Wisconsin-Madison, Madison, WI, 2Innovation Center for US Dairy, Rosemont, IL.

The potential role of gut hydrogenotrophic acetogens from herbivores for biofuel production.
C. L. Yang*, J. X. Liu, and J. K. Wang, Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.

A novel enzyme (FumD) to degrade fumonisins in rumen fluid: An in vitro study.
S. Schaumberger*,1, S. Masching1, D. Schatzmayr2, I. Dohnal2, and C. Stoiber2, 1Biomin Holding GmbH, Getzersdorf, Lower Austria, Austria, 2Biomin Research Centre, Tulln, Lower Austria, Austria.

Agricultural land use changes in the United States as a function of diet changes, with a focus on dairy.
A. D. Henderson1, B. McCracken2, and Y. Wang*,1, 1University of Texas School of Public Health, Austin, TX, 2Texas A&M University, Dept. of Agricultural Economics, College Station, TX, 3Innovation Center for US Dairy, Rosemont, IL.
Ruminant Nutrition IV

Chair: Stephanie Ward, North Carolina State University
Room 317

2:00 PM

2:15 PM

2:30 PM

2:45 PM

2:00 PM

2:45 PM

3:00 PM

3:15 PM

3:30 PM

3:45 PM

4:00 PM

4:15 PM

4:30 PM

Ruminal planktonic, weakly, and tightly feed-adhered bacterial community as affected by two *Trichoderma reesei* enzyme preparations fed to lactating cattle.
J. J. Romero*, D. C. Reyes1, Z. X. Ma2, and A. T. Adesogan3, 1Animal and Veterinary Sciences, School of Food and Agriculture, University of Maine, Orono, ME, 2Department of Animal Sciences, Institute of Food and Agriculture, Gainesville, FL.

Antibiotically disturbed rumen microbiota can be redressed by microbiota transplantation in dairy cows.
S. Ji1, H. Yan1, Tao Jiang1, C. Y. Guo3, J. J. Liu1, Z. J. Cao1, Y. J. Wang3, and S. L. Li1, 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China, 2College of Animal Science, Tianjin University, Tianjin, China, 3College of Animal Science and Technology, Shihou University, Shihou, Xinjiang, China.

Heat stress influences the rumen microbiome of mid-lactation dairy cows.
D. P. Bu1, S. C. Li2, L. Wang*, L. H. Baumgard1, and Z. T. Yu3, 1Animal Science, The Ohio State University, Columbus, OH, 2Department of Animal Science, Iowa State University, Ames, IA, 3CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing, China, 4Hunan Co-Innovation Center of Safety Animal Production, CICSAP, Changsha, Hunan, China.

Identifying the influence of the rumen microbiome on the feed efficiency phenotype in beef cattle.

Metatranscriptome sequencing reveals insights into the gene expression of the bovine epimural bacterial community during subacute ruminal acidosis.
S. Schmitz-Esser1,2, S. Wetzels2,3, Q. Zebeli1, M. Wagner2, and E. Mann2, 1University of Veterinary Medicine Vienna, Institute for Milk Hygiene, Vienna, Austria, 2University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Vienna, Austria.

Potential role of rumen bacterial communities in shaping milk production and composition of dairy cows.
M. Y. Xue*, H. Z. Sun1, X. H. Wu1, D. M. Wang1, L. L. Guan2, J. K. Wang1, and J. X. Liu1, 1Institute of Dairy Science, Ministry of Agriculture-Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 2State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 3University of Lille, Gembloux Agro-Bio Tech, Precision Livestock and Nutrition Unit, Passage des Déportés 2, Gembloux, Belgium.

Effects of *E. coli* O157:H7 and silage additives on bacterial diversity and composition of alfalfa silage.

Urea nitrogen induces changes in rumen microbial and host metabolic profiles in dairy cows.
D. Jin*, S. G. Zhao*, N. Zheng1, Y. Beckers4, and J. Q. Wang4, 1Ministry of Agriculture-Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 2Ministry of Agriculture-Laboratory of Quality and Safety Risk Assessment for Dairy Products, Beijing, China, 3State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 4University of Lille, Gembloux Agro-Bio Tech, Precision Livestock and Nutrition Unit, Passage des Déportés 2, Gembloux, Belgium.

Circulating ceramide concentrations are influenced by saturated fatty acid chain length in mid-lactation dairy cows.
J. E. Rico*, D. E. Rice2, Z. C. Phipps1, Q. Zeng1, B. A. Corl3, P. Y. Chouinard1, R. Gervais1, and J. W. McFadden4, 1West Virginia University, Morgantown, WV, 2Université Laval, Québec, QC, Canada, 3Virginia Tech, Blacksburg, VA.

Characterization of bovine lipoprotein ceramide.
Z. C. Phipps*, F. Seck, A. N. Davis, J. E. Rico, and J. W. McFadden, West Virginia University, Morgantown, WV.

Micronutrient supplementation and the peripartal plasma lipidome.
Y. Zang*, S. S. Samii1, H. R. Bailey2, W. A. Myers3, A. N. Davis1, E. Grilli2, and J. W. McFadden4, West Virginia University, Morgantown, WV, 2University of Bologna, Bologna, Italy.
Metabolomic study of the short-term effects of β-glucan supplementation to lactating dairy ewes.

Ruminant Nutrition V
Chair: Luiz Ferraretto, University of Florida
Room 318

Production performance of high-producing Holstein cows consuming diets containing hulled or hull-less barley as the grain source in diets containing different forage to concentrate ratios.

Substitution of fall-grown oat forage for corn silage affects lactating dairy cow performance.

Effect of forage changes on the dynamic variation of the rumen fermentation in sheep.
X. Xie*, J. K. Wang, L. L. Guan, and J. L. Liu, Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China, Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada.

Impact of dietary starch concentration formulated with two types of corn silage on the performance of dairy cows.
J. I. Sanchez-Duarte* and K. F. Kalscheur, South Dakota State University, Brookings, SD, US Dairy Forage Research Center, USDA, ARS, Madison, WI.

Effects of replacing corn with different levels of starch degradability with beet pulp as a source of soluble fiber on fermentation in continuous culture.
L. E. Koch*, B. M. Koch, R. N. Klopp, S. M. Hussein, V. R. Trutwin, and G. J. Lascano, Clemson University, Clemson, SC.

Starch degradability in combination with sugar alter fermentation in continuous culture.
L. E. Koch*, B. M. Koch, R. N. Klopp, S. M. Hussein, V. R. Trutwin, and G. J. Lascano, Clemson University, Clemson, SC.

Metabolic profile of Holstein heifers fed carinata meal.
K. Rodriguez-Hernandez*, J. Anderson, and J. Clapper, Dairy and Food Science Department, South Dakota State University, Brookings, SD, CIRNOC-INIFAP, Torreon, Coahuila, Mexico, Department of Animal Science, South Dakota State University, Brookings, SD.

Milk production and composition of dairy cows fed hydroponic barley sprouts.
R. D. Lawrence*, J. L. Anderson, S. I. Martinez Monteagudo, and L. Metzger, Dairy and Food Science Department, South Dakota State University, Brookings, SD.

Efficacy of layer manure ash (LMA) byproduct in lactating dairy cow diets as a replacement for the buffering capacity of sodium bicarbonate.
4:30 PM 439 Growth performance of dairy calves fed microbially enhanced soy protein in starter pellets with pasteurized milk. N. D. Senevirathne*, J. L. Anderson1, and W. R. Gibbons2, 1Dairy and Food Science Department, South Dakota State University, Brookings, SD; 2Department of Biology and Microbiology, South Dakota State University, Brookings, SD.

4:45 PM 440 Dry period plane of energy and periparturient disease status: Effects on feed intake, energy balance, milk production, and milk composition. A. Pineda*, F. C. Cardoso, and J. K. Drackley, University of Illinois, Urbana, IL.
Wednesday, June 28

Milk Protein and Enzymes Symposium:
Protein Interactions—Aggregations and Interfaces
Chair: David Everett, California Polytechnic State University
Room 330

9:30 AM 441 Milk proteins: Aggregation and interactions at interfaces and within dairy networks.
S. Gras*, The University of Melbourne, Melbourne, VIC, Australia.

10:00 AM 442 Effect of aggregation and interfaces on the digestion of dairy proteins.
A. Mackie*, N. Rigby, and A. Macierzanka, University of Leeds, Leeds, United Kingdom; Gdansk University of Technology, Gdansk, Poland.

10:30 AM 443 The role of soluble aggregates on the processing functionality of milk and milk concentrates.
Milena Corredig*, Gay Lea Foods Cooperative, Research and Development, Guelph, ON, Canada; University of Guelph, Food Science Department, Guelph, ON, Canada.

11:00 AM Break

11:15 AM 444 Characterizing dairy powder hydration—Some new perspectives.

11:45 AM 445 Impact of protein aggregation on in-process and finished product stability of infant formula.
M. Fenelon*, A. Buggy, and E. Murphy, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.

Ruminant Nutrition VI
Chair: Juan Romero, University of Maine
Room 310-311

9:30 AM 446 Ethyl-cellulose rumen-protected methionine enhances animal performance during the periparturient period and early lactation in dairy cows.
F. Batistel*, J. M. Arroyo, A. Bellingeri, W. Wang, B. Saremri, C. Parys, E. Trevisi, F. C. Cardoso, and J. J. Loor, University of Illinois at Urbana-Champaign, Urbana, IL, Universidad de la Republica, San José, Uruguay; South- west University, Rongchang, China; Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Germany; Università Cattolica del Sacro Cuore, Piacenza, Italy.

9:45 AM 447 Effect of ethyl-cellulose rumen-protected methionine supplementation on inflammation, oxidative stress and neutrophil function during the periparturient period and early lactation in dairy cows.
F. Batistel*, J. M. Arroyo, C. I. M. Garces, E. Trevisi, B. Saremri, C. Parys, M. A. Ballou, and J. J. Loor, University of Illinois at Urbana-Champaign, Urbana, IL; Universidad de la Republica, San José, Uruguay; Università Cattolica del Sacro Cuore, Piacenza, Italy; Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Germany; Texas Tech University, Lubbock, TX.

10:00 AM 448 Milk protein and intake responses to isoleucine, leucine, methionine, and threonine.
M. Aguilar*, J. Castro Marquez, R. R. White, and M. D. Hanigan, Virginia Tech, Blacksburg, VA.

10:15 AM 449 Lactational performance of ruminally protected methionine and lysine prototypes.

10:30 AM 450 Effects of abomasal infusions of amino acids or glucose on energy and protein metabolism during an induced negative energy balance.
I. Ansia*, Y. Ohta, T. Fujieda, and J. K. Drackley, University of Illinois, Urbana, IL; Ajinomoto Co. Inc., Tokyo, Japan.
10:45 AM 451
Branched-chain amino acids direct other essential amino acids to extra-mammary tissues in lactating dairy cows.
R. V. Curtis1, J. J. M. Kim1, L. E. Wright1, J. Doelman2, and J. P. Cant1; 1University of Guelph, Guelph, ON, Canada, 2Nutreco Nederland BV, Boxmeer, the Netherlands.

11:00 AM 452
Impact of choline on the inflammatory response of innate and adaptive immune cells.
M. Garcia1, J. Shaffer2, L. Mamedova3, B. Barton3, and B. J. Bradford1; 1Kansas State University, Manhattan, KS, 2Balchem Corporation, New Hampton, NY.

11:15 AM 453
Supplementation of rumen-protected choline (RPC) to periparturient dairy cows improved cow and calf performance.
M. G. Zenobi1, R. Gardinal1, B. A. Barton1, J. E. P. Santos1, and C. R. Staples2; 1University of Florida, Gainesville, FL, 2Balchem Corp, New Hampton, NY.

11:30 AM 454
Prepartum energy intake and supplementation of rumen-protected choline (RPC) influence biomarkers of the immune system of lactating dairy cows.

11:45 AM 455
Feeding canola meal and Smartamine-M in diets with field peas to lactating dairy cows.
A. B. D. Pereira1,2, A. F. Brito1, N. L. Whitehouse1, D. C. Moura2, B. C. Downey3, and A. S. Oliveira5; 1University of New Hampshire, Department of Biological Sciences, Durham, NH, 2Purina Animal Nutrition LLC, Shoreview, MN, 3Universidade Federal de Mato Grosso, Programa de Pós Graduação em Ciência Animal, Cuiabá, MT, Brazil, 4University of California Davis, Department of Animal Science, Davis, CA, 5Universidade Federal de Mato Grosso, Instituto de Ciências Agrárias e Ambientais, Sinop, MT, Brazil.

12:00 PM 456
Influence of trace mineral source on copper, manganese, and zinc rumen solubility and release from the insoluble portion of rumen digesta following a bolus dose of trace minerals in cattle.
B. Weigel1, V. N. Kucharczyk2, K. Sellins1, E. Caldera1, J. J. Wagner1, J. W. Spears3, S. L. Archibeque1, R. S. Fry4, S. B. Laudert4, and T. E. Engle5; 1Colorado State University, Fort Collins, CO, 2Purina Animal Nutrition, Dublin, TX, 3North Carolina State University, Raleigh, NC, 4Micronutrients, Indianapolis, IN.

12:15 PM 457
Toxy-Nil and Unike Plus reduce aflatoxin M1 levels in milk of lactating dairy cows fed aflatoxin B1.
Ro. O. Rodrigues1,2, R. O. Rodrigues3, D. R. Ledoux2, G. E. Rottinghaus1, R. Borutova2, O. Averkieva2, and T. B. McFadden1; 1University of Missouri, Columbia, MO, 2Nutriad International NV, Belgium, Belgium.

Breeding and Genetics III:
Methods
Chair: Daniela Lourenco, University of Georgia
Room 326

9:30 AM 458
Phenotypic analysis of daily milk, fat, and protein production with geometric morphometrics.
Á. A. D. Benítez1,2, J. I. Weller1, and E. Ezra2; 1Institute of Animal Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel, 2Isreal Cattle Breeders Association, Caesaria Industrial Park, Israel.

9:45 AM 459
Genetic parameters of bovine milk color and processing characteristics predicted by mid-infrared spectroscopy.
G. Visentin1,2, D. P. Berry2, M. De Marchi1, S. McParland2, A. McDermott1,2, S. Scarso2, M. A. Fenelon3, and M. Penasa1; 1Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, Legnaro (PD), Italy, 2Animal and Grassland Research and Innovation Center, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland, 3Teagasc Food Research Center, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland.

10:00 AM 460
Genetic parameters of milk fatty acid profile in dairy sheep.
J. Serdino, F. Correddu, M. G. Manca, A. Puledda, C. Dimauro, A. Nudda, and N. P. P. Macciotta*; 1University of Sassari, Sassari, Italy.

10:15 AM 461
Genomic predictions for crossbreds from all-breed data.
M. E. Tooker*, P. M. VanRaden, and G. C. Fok; 1Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD.
10:30 AM 462 Genetic trends from single-step GBLUP and traditional BLUP for production traits in US Holstein. Y. Masuda*, I. Misztal1, P. M. VanRaden3, and T. J. Lawlor3, 1University of Georgia, Athens, GA, 2USDA, AGIL, Beltsville MD, 3Holstein Association USA Inc., Brattleboro, VT.

10:45 AM 463 A Genetic Diversity Index method to improve imputation accuracies of rare variants. A. M. Butty*, F. Miglior1,2, P. Stothard3, F. S. Schenkel3, F. S. Schenkel1,2, B. Gredler4, M. Sargolzaei1,5, and C. F. Baes1, 1Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, 2Canadian Dairy Network, Guelph, ON, Canada, 3Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, 4Qualitas AG, Zug, ZG, Switzerland, 5Semex Alliance, Guelph, ON, Canada.

11:00 AM 464 Determination of quantitative trait variants by concordance via application of the a posteriori granddaughter design to the US Holstein population. J. I. Weller*, D. M. Bickhart2, G. R. Wiggans2,3, M. E. Tooker2, J. R. O'Connell4, J. Jiang5, and P. M. VanRaden2, 1Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel, 2Agricultural Research Service, Beltsville, MD, 3Council on Dairy Cattle Breeding, Bowie, MD, 4University of Maryland Medical School, Baltimore, MD, 5University of Maryland, College Park, MD.

11:15 AM 465 Impact of SNP selection on genomic prediction for different reference population sizes. D. A. L. Lourenco*, I. R. Menezes1,2, B. O. Fragomeni1, H. L. Bradford1, S. Tsuruta1, and I. Misztal1, 1University of Georgia, Athens, GA, 2University of Sao Paulo, Pirassununga, SP, Brazil.

11:45 AM 467 Including causative variants into single-step genomic BLUP. B. D. Fragomeni*, Y. Masuda1, A. Legarra2, and I. Misztal1, 1University of Georgia, Athens, GA, 2INRA, Castanet-Tolosan, France.

12:00 PM 468 Impact of pedigree truncation on accuracy and convergence of ssGBLUP in a population with long pedigree when only a fraction of animals are phenotyped. I. Pocrnic*, I. R. Menezes1,2, H. L. Bradford1, C. Y. Chen2, and I. Misztal1, 1Department of Animal and Dairy Science, University of Georgia, Athens, GA, 2Genus PIC, Hendersonville, TN.

12:15 PM 469 Bayesian whole-genome prediction and genome-wide association analysis with missing genotypes using variable selection. C. Chen*, K. A. Weigel1, E. E. Connor1, D. M. Spurlock4, M. J. VandeHaar1, C. R. Staples2, and R. J. Tempelman1, 1Michigan State University, East Lansing, MI, 2University of Wisconsin-Madison, Madison, WI, 3USDA-ARS, Beltsville, MD, 4Iowa State University, Ames, IA, 5University of Florida, Gainesville, FL.

12:30 PM 470 SSGP: SNP-set based genomic prediction to incorporate biological information. J. Jiang*, J. O'Connell1, P. VanRaden3, and L. Ma1, 1Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 2University of Maryland School of Medicine, Baltimore, MD, 3Animal Genomics and Improvement Laboratory, ARS-USDA, Beltsville, MD.

Animal Behavior and Well-Being Symposium:
Allowing for Natural Behavior in Dairy Cattle
Chair: Emily Miller-Cushon, University of Florida
Sponsor: Dean Foods
Room 301-302

10:15 AM 472 Housing and management that promotes natural behavior in dairy calves. J. F. Johnsen*, Norwegian Veterinary Institute, Department of Health Durveillance, Oslo, Norway.

11:00 AM 473 Designing the maternity pen to allow for maternal behavior in dairy cattle. K. L. Proudfoot*, P. D. Krawczel3, and M. A. G. von Keyserlingk*, 1The University of British Columbia, Vancouver, BC, Canada, 2The Ohio State University, Columbus, OH, 3The University of Tennessee, Knoxville, TN.
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Description</th>
<th>Speaker(s)</th>
<th>Institution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:45 AM</td>
<td>What to build next: Alternatives to freestall housing that promote natural behavior.</td>
<td>J. M. Bewley*</td>
<td>University of Kentucky, Lexington, KY.</td>
</tr>
<tr>
<td></td>
<td>Dairy Foods Symposium: Biology LAB Symposium: Recent Developments in Lactic Acid Bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dairy Foods Symposium: Biology LAB Symposium: Recent Developments in Lactic Acid Bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chair: M. Miller, University of Illinois, and J. Broadbent, Utah State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Room 328</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30 AM</td>
<td>Opening remarks.</td>
<td>M. Miller and J. Broadbent.</td>
<td></td>
</tr>
<tr>
<td>9:45 AM</td>
<td>Advances in nonstarter microbiology related to gassy defect in cheese.</td>
<td>C. Oberg*</td>
<td>Weber State University, Ogden, UT.</td>
</tr>
<tr>
<td>10:15 AM</td>
<td>Lactococcal lantibiotics and bioengineering thereof.</td>
<td>P. D. Cotter*</td>
<td>Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland, APC Microbiome Institute, Cork, Ireland.</td>
</tr>
<tr>
<td>10:45 AM</td>
<td>Less is more: Improving starter cultures to bring out the best in yogurt.</td>
<td>E. Johansen*</td>
<td>Chr. Hansen A/S, Harsholm, Denmark.</td>
</tr>
<tr>
<td>11:15 AM</td>
<td>CRISPR-Cas: Research and application of natural systems in dairy starter cultures.</td>
<td>D. Romero*</td>
<td>DuPont Nutrition & Health, Madison, WI.</td>
</tr>
<tr>
<td>11:45 AM</td>
<td>Mining and exploiting CRISPR-Cas systems in lactic acid bacteria.</td>
<td>A. Briner* and R. Barrangou*</td>
<td>North Carolina State University.</td>
</tr>
<tr>
<td>12:15 PM</td>
<td>Closing remarks.</td>
<td>M. Miller and J. Broadbent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dairy Foods IV: Dairy Ingredients</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chair: Annie Bienvenue, US Dairy Export Council</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Room 329</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00 AM</td>
<td>Influence of composition and microstructure on flowability and wetting behaviour of α-lactalbumin enriched whey protein ingredients.</td>
<td>G. Barone*, J. O’Regan*, and J. O’Mahony*</td>
<td>School of Food and Nutritional Sciences, University College Cork, Cork, Ireland, Nestlé R&D Center, Wyeth Nutritionals Ireland, Askeaton, Co.Limerick, Ireland.</td>
</tr>
<tr>
<td>10:30 AM</td>
<td>Effect of milk protein composition on in vitro digestion of a model infant formula.</td>
<td>N. R. Tari*, E. Arranz*, and M. Corredig*</td>
<td>Department of Food Science, University of Guelph, Guelph, ON, Canada, Gay Lea Foods Research and Development, Guelph, ON, Canada.</td>
</tr>
</tbody>
</table>
10:45 AM 485 Hydrogenation of lactose for the production of nutritive sweeteners. S. Martínez-Monteagudo*, M. Enteshari, and L. Metzger, Dairy and Food Science Department, South Dakota State University, Brookings, SD.

11:00 AM 486 Enzyme-triggered microcapsules to selectively color Cheddar cheese and obtain white whey powder. R. Ravanfar* and A. Abbaspourrad, Cornell University, Ithaca, NY.

11:15 AM 408 Effect of lactoferrin on metallic taste and immunity dysfunction induced by chemotherapy. A. Wang**, S. Duncan¹, G. Lesser¹, W. Ray¹, and A. Dietrich¹, Virginia Polytechnic Institute and State University, Blacksburg, VA, Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC.
Food and Nutrition Symposium
Chair: Jim Keating, Iowa State University
Room 315-316

9:30 AM 497
Consequences of leaky gut on the immune system, metabolism, physiology and animal performance.
L. H. Baumgard*, S. K. Kvidera1, E. A. Horst1, M. J. Dickson1, E.J. Mayorga1, M. Al-Qais1, S. Lei1, J. A. Ydstie1, C. S. Shouse1, K. L. Bidne1, J. T. Seibert1, A. F. Keating1, J. W. Ross1, J. T. Selsby1, R. P. Rhoads2, 1Iowa State University, Ames, IA, 2Virginia Tech University, Blacksburg, VA.

10:00 AM 499
Mechanisms linking metabolic stress with innate immunity and endometrial health.
I. M. Sheldon*, Swansea University Medical School, Swansea, United Kingdom.

10:30 AM 500
Physiology and pathophysiology of the microbiome and immune-related genes in development of the fetal brain.
C. E. Wood*, M. B. Rabaglino, M. A. Zarate, and E. I. Chang, Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL.

11:00 AM 501
Effectors of immunometabolic adaptations to lactation: implications on physiology and performance.
J. J. Loor*, F. Batistel, M. Vailati-Riboni, and Z. Zhou, University of Illinois, Urbana-Champaign, IL.

11:30 AM 502
Lipids as regulators of conceptus development: implications for nutritional regulation of reproduction.
E. S. Ribeiro*, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.

12:00 PM 503
Reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function.
Z. Roth*, Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot, Israel.

Physiology and Endocrinology Symposium:
Mediators of Effects of Stress on Reproduction, Growth, and Lactation
Chair: Peter Hansen, University of Florida
Sponsor: BIOMIN America
Room 315-316

9:30 AM 498
Consequences of leaky gut on the immune system, metabolism, physiology and animal performance.
L. H. Baumgard*, S. K. Kvidera1, E. A. Horst1, M. J. Dickson1, E.J. Mayorga1, M. Al-Qais1, S. Lei1, J. A. Ydstie1, C. S. Shouse1, K. L. Bidne1, J. T. Seibert1, A. F. Keating1, J. W. Ross1, J. T. Selsby1, R. P. Rhoads2, 1Iowa State University, Ames, IA, 2Virginia Tech University, Blacksburg, VA.

10:00 AM 499
Mechanisms linking metabolic stress with innate immunity and endometrial health.
I. M. Sheldon*, Swansea University Medical School, Swansea, United Kingdom.

10:30 AM 500
Physiology and pathophysiology of the microbiome and immune-related genes in development of the fetal brain.
C. E. Wood*, M. B. Rabaglino, M. A. Zarate, and E. I. Chang, Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL.

11:00 AM 501
Effectors of immunometabolic adaptations to lactation: implications on physiology and performance.
J. J. Loor*, F. Batistel, M. Vailati-Riboni, and Z. Zhou, University of Illinois, Urbana-Champaign, IL.

11:30 AM 502
Lipids as regulators of conceptus development: implications for nutritional regulation of reproduction.
E. S. Ribeiro*, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.

12:00 PM 503
Reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function.
Z. Roth*, Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot, Israel.

Physiology and Endocrinology IV
Chair: Alex Souza, Ceva Sante Animale
Room 324

9:30 AM 504
Effect of osmotic pressure on spermatozoa characteristics of cryopreserved buffalo bull (Bubalus bubalis) semen.
A. Ijaz*, D. H. Mughal2, and U. Farooq1, 1Nur International University, Lahore, Punjab, Pakistan, 2University of Veterinary & Animal Sciences, Lahore, Punjab, Pakistan.

9:45 AM 505
Effects of sperm dosage on conception rates of sex-sorted sperm processed using SexedUltra procedures.
M. D. Utt*, B. Harstine1, L. Helser1, J. M. DeJarnette1, R. Lenz2, C. Gonzalez2, T. Gilligan2, J. Moreno2, and R. Vishwanath1, 1Select Sires Inc., Plain City, OH, 2Sexing Technologies, Navasota, TX.
Comparative effect of a commercial and tris-citric-egg-yolk (TCEY) extenders on post-thaw semen quality of Nili-Ravi buffaloes.
A. Sattar*, 1, M. A. Khan1, S. Ali1, M. Ahmad2, A. A. Channa1, M. U. Mehmoon1, A. Husnain1, and N. Ahmad1, 1Department of Theriogenology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Pakistan, 2Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Pakistan.

Triladyl improves post-thaw semen quality of Sahiwal bulls.
A. Sattar*, 1, S. Ali2, S. Faryal1, M. A. Khan1, A. Rehman1, M. U. Mehmoon1, A. Rehman1, and M. Z. Tahir2, 1Department of Theriogenology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Pakistan, 2Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Pakistan.

Effect of royal jelly on post-thaw semen quality of Beetal bucks.
M. Kaleem1, A. Rehman1, M. Avais2, M. U. Mehmood1, and A. Sattar*, 1Department of Theriogenology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Pakistan, 2Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Pakistan.

Dietary supplementation of conjugated linoleic acids on sperm quality and freezability in bovines.
M. S. Liman1, C. L. Cardoso1, D. C. Holm1, S. de Bruyn2, B. Gasparrini2, V. Franco2, V. Longobardi2, and G. Esposito*, 1Faculty of Veterinary Sciences, University of Pretoria, Pretoria, South Africa, 2University of Naples, Federico II, Naples, Italy.

Production, Management, and the Environment Symposium:
Greenhouse Gas Emissions from Dairy Operations
Chair: Alex Hristov, Pennsylvania State University, University Park
Sponsor: DSM Nutritional Products
Room 319-320

Introduction.
A. Hristov.

Greenhouse gas emissions from confined dairy production systems.
A. B. Leytem*1 and E. Kebreab2, 1USDA-ARS, Kimberly, ID, 2University of California, Davis, CA.

Greenhouse gas emissions from pasture-based dairy production systems.
G. J. Lanigan*1, W. Burchill1, J. Humphreys2, P. Forrestal1, and K. G. Richards1, 1Teagasc, Johnstown Castle, Wexford, Ireland, 2Teagasc, Moorepark, Fermoy, Ireland.

Manure greenhouse gas emissions: Prediction and mitigation.
S. O. Petersen*, Aarhus University, Tjele, Denmark.
Enteric methane emissions: Prediction and mitigation, the GLOBAL NETWORK project.
A. N. Hristov*,1, E. Kebreab2, M. Niu3, J. Oh1, C. Arndt4, A. Bannink1, A. R. Bayat5, A. F. Brito6, D. Casper7, L. A. Crompton8, J. Dijkstra4, P. C. Garnsworthy9, N. Haue10, A. L. F. Hellwing11, P. Huhtanen12, M. Kreuzer13, B. Kuhla14, P. Lund15, J. Madsen16, S. C. McClelland17, P. Moate18, C. Muñoz19, N. Peiren12, J. M. Powell19, C. K. Reynolds1, A. Schwarm20, K. J. Shingfield19, T. M. Storlien20, and M. R. Weisbjerg1*,1 Department of Animal Science, The Pennsylvania State University, University Park, PA, 2 Department of Animal Science, University of California, Davis, CA, 3 Environmental Defense Fund, New York, NY, 4 Wageningen University & Research, Wageningen, the Netherlands, 5 Milk Production Solutions, Green Technology, Natural Resources Institute Finland, Finland, 6 Department of Biological Sciences, University of New Hampshire, Durham, NH, 7 First McNeiss Company, Freeport, IL, 8 School of Agriculture, Policy and Development, University of Reading, Reading, UK, 9 School of Biosciences, University of Nottingham, Nottingham, UK, 10 Department of Large Animal Sciences, University of Copenhagen, Denmark, 11 Department of Animal Science, Aarhus University, Tjele, Denmark, 12 Department of Agricultural Science for Northern Sweden, Swedish University of Agricultural Sciences, Sweden, 13 ETH Zurich, Institute of Agricultural Science, Switzerland, 14 Institute of Nutritional Physiology, Leibniz Institute for Farm Animal Biology, Germany, 15 Agriculture Research Division, Department of Environment and Primary Industries, Australia, 16 INIA Remehue, Instituto de Investigaciones Agropecuarias, Chile, 17 Institute for Agriculture, Fisheries and Food Research, Belgium, 18 USDA-ARS US Dairy Forage Research Center, 19 Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, UK, 20 Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Norway.

Modeling greenhouse gas emissions from dairy farms.
C. A. Rotz*, USDA-ARS, University Park, PA.

Panel discussion.

Production, Management, and the Environment V
Chair: Phil Cardoso, University of Illinois
Room 321

Relationship between bulk tank fat and true protein test and milk fatty acid composition.
D. M. Barbano*,1, M. E. Carabeau2, H. M. Dann3, and R. J. Grant4, 1 Cornell University, Ithaca, NY, 2 Miner Institute, Chazy, NY.

The effects of US region on the annual rhythms of milk yield and fat and protein concentration and yield of dairy cattle at the herd level.
I. J. Salfer*,1, C. D. Dechow, and K. J. Harvatine, The Pennsylvania State University, University Park, PA.

Relationship of mid-lactation feed efficiency with early and late lactation body condition score in Holstein dairy cows.
L. Hardie*,1, K. Maxwell1, M. VandeHaar2, and D. Spurlock2, 1 Iowa State University, Ames, IA, 2 Michigan State University, East Lansing, MI.

Comparison of growth and meat quality of Holstein and crossbred dairy steers grazing two cover cropping systems.
H. Phillips*,1, B. Heins2, K. Delate3, and B. Turnbull1, 1 University of Minnesota, Morris, MN, 2 Iowa State University, Ames, IA.

Comparison of liquid stored and frozen semen in 2 different timed AI protocols.
S. Borchardt1, L. Schueller1, L. Wolf1, C. Wesenauer1, and W. Heuwieser*,1, 1 Clinic for Animal Reproduction, College of Veterinary Medicine, Universitaet Berlin, Berlin, Germany, 2 RinderAllianz, Woldegk, Mecklenburg Vorpommern, Germany, 3 Department of Population Medicine and Diagnostic Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY.

Progesterone profile of lactating dairy cows with reference to production and cyclicity during P4 supplementation.
R. S. Balouch*,1, S. Abbas*,1, and A. H. Shahzad*,1 L&DD, Punjab, Lahore, Pakistan, 2 UVAS, Lahore, Lahore, Pakistan.
Dairy Foods Symposium:
Chr. Hansen Symposium: Microbial Ecology of Cheese
Chair: John Lyne, Chr. Hansen Inc.
Sponsor: Chr. Hansen Inc.
Room 406

2:00 PM
Opening remarks.
John Lyne.

2:15 PM 523 Dairy species from non-dairy sources: Their genomic and metabolic diversity and potential applications in cheese.
O. McAuliffe*, Teagasc Food Research Centre, Fermoy, Cork, Ireland.

2:45 PM 524 Development of secondary cultures for consistency and control over cheese ripening.

3:15 PM 525 Interaction of starter cultures and nonstarter lactic acid bacteria (NSLAB) in the cheese environment.
G. LaPointe*, University of Guelph, Guelph, ON, Canada.

3:45 PM 526 Interactions of production environment microbiota with food and beverage fermentations: Lessons for cheese production.
D. A. Mills*, Department of Food Science & Technology, University of California, Davis, CA.

4:15 PM 527 Diversity and dynamics of surface-ripened cheese microbiomes: Implications for cheese quality and safety.
B. E. Wolfe*, Department of Biology, Tufts University, Medford, MA.

4:45 PM Closing remarks.
John Lyne.

OTHER EVENTS

Mixed Models Workshop
Room 317-318

Wednesday, 8:00 to 5:00 PM; Thursday, 8:00 to 12:00 PM

Instructors:
Nora Bello, Kansas State University
Nick Keuler, University of Wisconsin
Kevin McCarter, Louisiana State University
Thursday, June 29

Teagasc-Moorepark/University College Cork Cheese Symposium
Chair: Paul Kindstedt, University of Vermont
William Penn Ballroom, Omni William Penn Hotel

8:45 AM 528 Opening address and framing of the Teagasc-Moorepark/University College Cork Cheese Symposium.
P. Kindstedt*, University of Vermont, Burlington, VT.

9:00 AM 528 Introduction to Teagasc: What is Ireland’s dairy research strategy?
M. Fenelon, Teagasc Food Research Centre Moorepark, Fermoy, Co. Cork, Ireland.

9:10 AM 528 Introduction to University College Cork (UCC).
P. McSweeney, University of College Cork, Ireland.

9:20 AM 528 Introduction of Professor Emeritus Pat Fox (UCC).
P. Kindstedt, University of Vermont.

9:25 AM 529 How has cheese science evolved? Lessons learned for future challenges.
P. F. Fox*, University College Cork, Dublin, Ireland.

9:55 AM 530 Biochemical, textural, and functional changes in cheese during ripening.
P. L. H. McSweeney*, University College Cork, Cork Ireland.

10:25 AM Break

10:45 AM 531 The cheese microbiome and its relevance to industry.
P. D. Cotter*1,2, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland, 2APC Microbiome Institute, Cork, Ireland.

11:15 AM 532 Influence of manufacture parameters on cheese microstructure, microbial localization and their interactions during ripening.

12:15 PM 533 Effect of dairy cow diet on the milk composition and processing characteristics of milk.
A. Gulati1, T. P. Guinee*1, M. A. Fenelon1, J. I. McManus1, and E. Lewis1, 1Teagasc Food Research Centre Moorepark, Fermoy, Co. Cork, Ireland, 2Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland, 3Teagasc, Animal & Grassland Research and Innovation Centre Moorepark, Fermoy, Co. Cork, Ireland.

12:45 PM Lunch

2:00 PM 534 Profiling the flavor of dairy products from grass-based versus non-grass based milk production systems.
K. N. Kilcawley*, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.

2:30 PM 535 Cheese: Nutrition and health.
T. Beresford* and S. Seratlic, Teagasc, Cork, Ireland.

3:00 PM 536 Interfacing next-generation cheese research with industry needs: A strategic challenge.
J. Lucey*, Wisconsin Center for Dairy Research, University of Wisconsin-Madison, Madison, WI.

3:20 PM Open Forum.
John Lucey, University of Wisconsin, Center for Dairy Research.

4:00 PM Closing.
Paul Kindstedt and Diarmuid Sheehan.
Author Index

Numbers following names refer to abstract numbers. A number alone indicates an oral presentation; an M preceding the number indicates a Monday poster and a T indicates a Tuesday poster. Orals are listed first, followed by Monday and Tuesday posters in numeric order.

The author index is created directly and automatically from the submitted abstracts. If an author's name is entered differently on multiple abstracts, the entries in this index will reflect those discrepancies. Efforts have been made to make this index consistent; however, error from author entry contributes to inaccuracies.

A
Abbas, S., 522
Abbaspourrad, A., 486
Abbott, S., T34
Abdollahi-Arpanahi, R., 201, 379
Abuajamieh, M., 364
Acedo, T., M302
Aceto, H. W., 286
Achterberg, R. P., 53
Acosta, D. A. V., 305, M185
Adams, H., T179
Adams Progar, A., 46, 96, M24, M45
Adamski, J., 84
Adesogan, A. T., 109, 115, 116, 417, 423
Adjei-Fremah, S., 188, M28, M87
Afanador, G., M151, M152
Agenäs, S., 320
Agrawal, A., M252
Aguerre, M., M207, M284, T10
Aguilar, A., M255
Aguilar, M., 448
Aguirre, P., M154, T105
Ahmad, M., 506
Ahmad, N., 241, 506
Ahmad, S., 218
Ahmadi, L., T64
Ahmadzadeh, A., T153, T191
Ahmed, B. M., 487
Ahvenjärvi, S., 256
Ajmone-Marsan, P., 374
Akers, R. M., 34, M32, T155, T156
Akers, S., T172, M53, M324
Akkart, S., 218
Akins, M., 78, M160, M166, M168, T126
Akins, M., T156, T127, T196, T197
Akkurt, S., T90
Alaabdeh, H. A., 187
Alán, K. S., 513
Albanel, E., 340, 428, T291
Albarrán-Portillo, B., T193
Albornoz, R., 146
Albrecht, J., M250
Alcaine, S. D., T227
Alfoseo-Avila, A. R., 141, M322
Alfarthi, A. S., 148, M231, T288
Alhejaili, M., M142
Ali, R. A., M107
Ali, S., 506, 507
Allen, J., M273
Allen, M. S., 146, 231, 328, 329, M294, M307, T253
Allen, S. C., M246
Allen, T., M139
Alles, A., 387, T60
Almeida, A. K., 341, M327
Almeida, R., M225, M226, T128, T285
Almeida, R. A., M63
Almodóvar-Rivera, J. R., M202
Al-Qaisi, M., 88, 91, 92, 337, 338, 498, M189, M197, M201
Alugongo, G., T268
Aluthge, N., M301
Alvarado-Espino, A. S., T289, T293
Alves, B. G., 216, M280
Alves, E. B., T267
Alves, E. B., M165, M283, T125
Alves, K., 204
Alward, K., 134
Al-Youbi, S., 121, 222, M80
AlZahal, O., M238
Amamcharla, J., M4, M5, T93
Amaral, G., M122
Amarante, A., T24
Amaro, F. X., T24
Amaro, F. X., M116
Amaro, N. E., 497
Ambrose, D. J., 32, 165, 510, M38, M180, M298
Amer, P., 208
Amer, P. R., M203
Ametaj, B. N., 104
Amorim, G., T162
Amorim, R., T162
Amunson, L. A., 27, 396, T150
Amunson, L. A., M92
Ammudoss, L. A., 27, 396, T150
Ammunson, L. A., 27, 396, T150
Amezcarb, A. E., M66
Anand, S., 289, M15, M133, T58
Andersen, P. H., 361
Anderson, J., 436
Anderson, J. L., 106, 437, 439, T274, T275
Anderson, K. L., 168
Anderson, R. C., M258
Anderson, R. J., M80
Andreen, D. M., 173
Anees-ur-Rehman, M., 297
Ángel-García, O., T289, T293
Anzia, I., 450, M187
Antöñez, G., T242
Appuhamy, J. A. D. R. N., M23
Aragona, K., M227, M228, T217
Araki, H., T225
Araujo, R. C., T252, T255, T256, T257
Araujo, D. B., T267
Arcari, A., 185
Arcaro, J. R. P., T25, T37
Archibeque, S. L., 456
Argüello, A., 119
Aris, A., T238
Ariza-Nieto, C., M151, M152, T101, T102, T130
Armamento, L., 209, 328
Armsfeld, M., 196
Arndt, C., 515
Aronovich, M., T250
Arranz, E., 483
Arriola, K. G., T242
Arnold, D. B., M165, T283, T125
Artús, L. M., T242
Aryana, K., M142
Asakuma, S., T160
Asiamah, E., 188, M28, M87
Asselstine, V., M105, T52
Astruc, J. M., 120
Auffe, R., M110
Aubrey, T. C., 106
Auclair, E., 432
Aumüller, M., T250
Auldrist, M., T244
Austin, K. J., 406
Auy, M. A. E., 444
Avis, M., 508
Avaroza, F. C., 90
Avellaneda, Y., T101, T102, T130
Averkieva, O., 457
Ávila, C. L. S., M163
INDEX

AUTHOR

INDEX

Bu, D. P., 267, 419, M230, M232, M234, T222, T246, T247, T249, T295
Buckley, F., 373
Bugmy, A., 445
Bundy, J. M., 270
Bunma, T., 308
Burakowska, K., 300
Burchill, W., 513
Burgers, E. E. A., 49
Burgett, C. G., 270
Burhans, W. S., T120
Burke, C. R., 203
Burnett, T. A., 315, T182, T186
Busato, S., 90
Büschker, W., M243
Buter, R., 61
Butler, D. M., 24
Butler, J., T232, T254
Butler, S. T., 235, T166
Butty, A. M., 463

C
Cabral, R., T217
Cabrera, V., 228, 310, 322, 412, M147
Cabrera-Cabrera, C., M188, T129
Cadudal, B. C., T204
Caja, G., 93, 119, 121, 122, 264, 340, 344, 398, 428, M220, M221, M240, T291, T292
Cajarville, C., 70, 497, T201, T215, T242
Caldeira, M., 309
Calderà, E., 456
Calderón-Leyva, M. G., T293
Caldwell, J. M., T5
Callanan, J., 46
Calsamiglia, S., 97
Cam, M., T96
Camarà, M., 207
Camera, M., M175, M177, M179
Cammack, K. M., 406
Campagna, S. R., 147
Campbell, C. A. E., T2
Campbell, J. M., T234, T236
Campbell, M. A., 350, 351
Camps, I., M123
Canale, C., M275
Canestraì, G., M251
Canisius, I. C., T188
Canisius, I. F., 314, M73, T12, T162, T169
Cannas, A., 121, T136
Canning, P. C., 34
Cánovas, A., M105, T51, T52
Cant, J. P., 2, 451, T135
Cao, Z., T248, T268
Cao, Z. J., 418
Capelesso, A., 497
Capote, J., 117
Cappato, L., M124, M130, M131, M132
Caprarulo, V., M237
Capuco, A., 490, M176
Carabaeu, M. E., 517
Cardoso, C. L., 509
Cardoso, F., M85, M36
Cardoso, F. C., 78, 282, 305, 363, 440, 446, M41, M148, M185, M186, T277, T283
Cardoso, F. F., T250
Carmo, M., M123
Carnahan, K., T153
Carneiro, B., T168
Carneiro, E. W., M225
Carpenter, A., T235
Carpenter, A. J., 333, T133
Carrao, P. C., M174, M179, T134
Carrero, D., 260
Carrillo, E., T289
Carrillo Castellanos, E., T293
Carriquiry, M., M271
Carroll, H., 225
Carter, A., 120
Carter, B. G., T65
Carvalho, A. F., T91
Carvalho, B. F., M163
Carvalho, L. R. D. Q., T112
Carvalho, M. R., M82
Carvalho, P. D., M182, M184, T154, T168
Casellas, J., T51
Casonato, S. H., M99
Casper, D., 515
Casperson, B. A., T138
Castagnino, P. S., T245
Castelani, L., T25, T37
Castillejos, L., 97
Castillo, A. R., T158
Castillo, J. F., 282
Castillo, M. S., T243
Castillo-Lopez, E., M301
Castro Marquez, J., 448
Castro Navarro, N., 118
Castro-Costa, A., 344
Cavadini, J. S., M156
Cavalcanti, R., M129
Cavallini, D., M251
Ceglowksi, B., T143
Ceh, C. A., 149
Celi, P., 28, 234, 331
Cernat, R. C., T241
Cerosalelli, P. E., 224
Cerqueira, M. M. O. P., M113
Ceri, R. L. A., 315, T182, T186
Cervantes, A. A. P., 423
Chacon, C., T32
Chahine, M., M214, T191, T236
Chaiyabutr, N., M328
Chalfun, L. H. L., T257
Chamani, M., T240
Chamberland, J., M135
Chambwe, T., M211

INDEX
Champagne, J., M54
Chandler, T. L., M278, T144, T163
Chang, E. I., 500
Chang, Y.M., 355
Channa, A. A., 506
Chanpongsgang, S., M328
Chantigny, M., M162, M164
Chapman, C., T217
Chapman, J., T230
Chapman, J. D., M29, M317, T280
Charbonneau, E., M162, M164, M208, M213, M322, T119
Charlton, G. L., 354
Chase, L. E., 224
Chebel, R., 247
Cheetham, L. E., 184
Chen, C., 469
Chen, C.Y., 468
Chen, H., M103
Chen, L., 381, M214
Chen, M. X., 217
Chen, Q., 403
Chen, Y., 342
Chen, Y.T., 265
Cheng, A., 27, M92, T150
Cheng, A. A., M203
Cheng, N., M7
Cherian, G., M72, M53
Cherif, C., M241, T263, T265
Chesnais, J. P., T51
Chester-Jones, H., 324, 325, M66, M68, M304
Chevaux, E., M255
Chiarle, A., T221
Chiavassa, C., T173, T185
Chibis, G., T131
Chillibroste, P., M271, T174, T175
Chinnasamy, B., M8
Chiozza-Logroño, J., M83, M84
Chizonda, S., M273
Choi, H., 449
Choquette, K., M8
Choudhary, R.K., 490, M172, M176
Choudhary, S., 490, M172, M176
Chouinard, P.Y., 141, 425, M322, M329, T223
Christen, A.-M., 375, T47
Christesten, B. M., T180, T181
Cieslar, S. R. L., 2
Ciocia, F., T81
Clapham, M. C., M198
Clapper, J., 436
Clark, N., M158
Clark, S., 213, M8
Claveau, S., T263, T265
Clay, A., M255
Clay, J.S., 377, 378
Clegg, J. L., 30
Clemente, F., T185
Clemente, G., T185
Clifford, P., 127
Coblentz, W.K., 430, M156, M160, M166, M168, T216, T127, T196, T197
Cockrum, R. R., 34, 406, M25, M333
Coe, M. G., T251, T266
Coetsee, J. F., 45
Cohen, B.-C., 496
Colazo, M. G., 32, 510, M38
Cole, J. B., 205, 274, 377, T45
Coleman, D., 339
Coleman, M., M198
Collao-Saenz, M. A., M169, T112
Collier, R., 15
Coloma-García, W., M220, M221
Colombatto, D., T294
Colón-González, V., M202
Combs, D. K., M161, M165, M283, M288, T125
Comin, A., T136
Compart, D. P., T260
Cone, J. W., M40
Connor, E., 328
Connor, E. E., 209, 469, M71, M103, M266
Contreras, G. A., 179, 537, M30, M194, M274, T33, T161, T269, T271
Contreras-Correa, Z. E., M202
Contreras-Govea, F. E., M286
Contreras-Jodar, A., 93, 340, 428
Cook, N., 248
Cook, D., M64
Cook, R. F., 315, T190
Coon, R. E., 336
Cooney, M., M64, M308
Coopani, G., T241
Cordero, G., T237
Cordon, L., 340
Corke, H., T78
Curl, B.A., 37, 425, 429, T113
Cornelia, P., 84
Cornelissen, J. B. W. J., 53
Corra, F. N., 400, 401, M178
Correa, F., T242
Cortéz, M. N., T267
Corredud, F., 460
Corredig, M., 22, 298, 443, 483, M107, T94
Correa, L., T24
Corsini, M., T230
Cortés, C., M277, M299
Cortinhas, C., M302
Corva, S., 98
Costa, H. H. A., T278
Costa, J. H. C., M56
Costa, M. S., T79
Costello, M. F., 67
Cotanch, K. W., 334, 438, T109
Cotter, P. D., 476, 531
Cousillas, G., M199
Couture, V. L., M63
Cox, E., 247
Cramer, G., 248
Cramer, M. C., 193
Crawford, C. E., T276
Crespo, R., T57
Cristina, M., M121, M124
Crompton, L. A., 399, 515
Crookenden, M. A., M254
Crooker, B. A., M199
Crosby, M. M., M330
Crow, G., 108
Croyle, S. L., 220, 288
Crump, P., M92, M284, T10, T164
Crutchfield, C. E., M32
Cruywagen, C. W., M267
Cruz, A., M115, M116, M117, M121, M122, M123, M124, M125, M126, M127, M128, M129, M130, M131, M132
Cubides, A., T130
Cuffia, M., M167, T201, T215
Culler, M., T141
Culumber, M., M139
Cummings, N. E., M23
Cunha, R. C., T255
Cunningham, H. C., 406
Curbelo-Rodriguez, J. E., M77, M202
Curik, I., 64
Curler, M. D., M93, M224
Curbó, S. S., 295
Curtis, J., 219
Curtis, R. V., 451
Curtis, Z., 133
Custodio, D., T174, T175

D

da Costa, L., 145, M88, T1, T28
da Cruz, J. C. R., T37
da Silva, E. B., T118
da Silva Filho, W. I., M275
da Silva Machado, W., 227
D’Abadia Netto, A. P., M261
Dado-Senn, B., 166
Dahl, G. E., 166, 400, 401, 487, 489, M20, M62, M178
Dahlberg, J., M158
Dai, S., T78
Dai, W., 403, 493, 494
Dai, X., 140, T209
Dallantonia, E. E., M314, T245
Damborg, V. K., M248
Dancy, K. M., 335
Danelon, J., T294
Danes, M. A. C., M239
Dänickie, S., 81, 84
Daniel, J. L. P., M36, T278
Daniels, K., 129
Daniels, K. M., 4, 95, 149, T133
Dann, H. M., 334, 350, 351, 386, 438, 517
Danscher, A. M., 361
Darby, H., M157
Darby, H. M., 322, T176
Daros, R. R., M57, M70, T18
Davidson, J. A., T183
Davis, A. N., 30, 426, 427, M198, M263
Davis, B. I., 20, M136, M137
Davis, E., M68, M285
Day, R., 172, 410, M53, T211
Dayuto, J., 70
Dayuto, J. E., T242
de Bruyn, S., 509
de Frutos, P., 118
de Haro Marti, M. E., M214, T191, T236
de Jong, L. G., T180, T181
de Koning, D., 66
de Koning, K., 137
de Koster, J., 179, M194, T145
de la Sota, R., 98, T22
De León, M., T116
de Lucas, J., 340
de Marchi, M., 295, 459
de Oliveira Roberti Filho, F., M41
de Paris, M., M229, M293, T7
de Passillé, A. M., 43, 280, M55, T186
de Prado, A. I., 398
de Resende, L. C., M237
De Santiago, M. A., M331
De Santiago-Miramontes, M. A., T289
de Souza, J., 1, 261, 262, 263, 537, M29, M30, M194, M263, T161, T269, T270, T271
de Souza Castagnino, P., M314
de Veth, M. J., M308
De Vries, A., 52, M34, M219, M223, T41, T71, T72
Decandia, M., T136
Dechow, C., 169
Dechow, C. D., 380, 518
Deeb, J., 202, T46
DeFrein, J. M., 94, M215
Deikun, L. L., T123, T124
DeJarnette, J. M., 505
Dekel, I., 307
Dekker, A., T230
Del Pino, F. A. B., T267
Del Valle, T. A., M318
Delate, K., 80, 323, 520
Dell, C. J., 74
Della Libera, A., T28
Dement, H., M184
Deml, A., 46
Demyon, L. C., M198
Denbow, M. D., M333
DeNise, S., 381, 382
DeNise, S. K., 33
Denman, S., 360
Dennis, N. A., 203
Dennis, T. S., 330, T121, T122, T123, T124, T198, T199, T200
DePeters, E., 414
Deradul Mulleady, S., T178
Derakhshani, H., 58, 59, 108, T14
Deshpande, V., T95
Desjardins-Morrisette, M., 244
Dessauge, F., 405
Devkota, B., M204
DeVries, T. J., 31, 43, 280, 285, 335, 336, 362, M76, M82, T6, T20, T23
Dewanckele, L., 259
Dhumez, O., 344
Di Croce, F., 382
Di Marzo, G., T17
Diamantino, V. R., T79
Dias, F. J. S., M169
Días, J. D. L., T252
Días, M., M169, T112
Díaz-Pérez, G., T158
Dickhöfer, U., T259
Dicks, N., M39
Dickson, M. J., 88, 312, 337, 338, 498, M189, M197, M201
Diehl, A. L., 39, M21, T280
Dietrich, A., 408
Dietz, S. J., T106, T107
Dijkstra, J., 515, M40
Dillard, S. L., 74
Dill-McFarland, K. A., T209
Dillon, P., 212
Dimauro, C., 460
Dion, S., M329
Dipasquale, D., T147
Djira, G., M15, T58
Doelman, J., 2, 451, T135
Dogra, P. K., 306
Dohman, I., 415, T35
Domenech-Pérez, K. I., M188, M202, T129
Dong, X., 82, 83
Donnelly, D. M., M165, M239, M283, M288, M306, T125
Donnelly, M. R., 376
Donohue, K. D., 48
Dooley, B. C., M256, M316, T241
Döffer, D., T180, T181
Dore, A. R., M165, M239, M283, M288, M306, T125
Douglas, M., T244
Downey, B. C., 455
Doyen, A., 18, M2, M135, T74
Dufour, E., T286
Dugas, F., 109, 454
Dù, C., T222
Duan, Z., T61
Dube, H., 307
Dubrovsky, S. A., 191, M80
Duffield, T., 47, 221, 246, 281
Duffield, T. F., 277, 278, 284, 336
Dufour, E., T286
Duggavathi, R., M39
Duncan, S., 408
Duncan, S. E., 385
Dunne, O., 1, 170, M26, M51
Dunn, S. M., 104
Dunn, T. R., 192
Duplessis, M., T139, T194, T207
Duque, M., 402
Durán, E., T291
Dusel, G., M190, M196, M235, T261
Dussault-Chouinard, I., T72, T74
Duval, S. M., 258
Duvaux-Ponter, C., 405
Duyvisveld, J., T114
Dvash, L., 71
Dvorak, R. A., 114
Dzieciol, M., 388

Eaglen, S. A., 67
Earleywine, T. J., T132
Ebenstein, D. B., 491
Eberhart, N. L., T8
Echeverría, A., T116
Eckelkamp, E., 167, M42
Eder, K., M235, T261
Edwardsson, H. M., M269
Edwards, E. M., T8
Eerdu, H., T271
Egger-Danner, C., T38
Ehrlich, A. M., M19
Eicker, S., 143
Ekwemalor, K., 188, M28, M87
Elcoso, G., T237
Elhadi, A., 398, T291, T292
Ellerbrock, R. E., T162
Elssasser, T. H., M71
Ely, L., T230
Emanuelson, U., T39
Emshenhuber, C., T35
Endres, E. L., M203, T164
Endres, M., 319
Endres, M. I., 43, 44, 280, 321
Enger, B. D., 149, M24, M32
Enger, K. M., 149
Engle, T. E., 456
Engstrom, M., M227, M228
Engstrom, S. K., T100
Enteshari, M., 485, T70
Erb, S. J., M46, M195, M278, T163
Erbay, Z., 299, M114, T96
Erdman, R. A., M266
Madogwe, E., M39
Madureira, A. M. L., 315, T182
Madsen, J., 515
Maerz, N. L., 397
Magliola, C., T173
Mahapatra, A. K., M136
Mahjoubi, E., M326, T240
Maia, C., T168
Maier, C., 56, M86
Maier, G., M80
Maiocchi, M., T290
Mak, C. K., 379
Makanjuola, B., T49, T50
Maki, C., 40
Mäki-Tanila, A., 372
Makurumure, A. Y., M210
Malchiodi, F., 375, T47
Maldini, G., M307
Malherbe, C. S., M282
Malmuthuge, N., 251, M27
Maltecca, C., 62, 210, T49
Mamedova, L., 452
Mamedova, L. K., T133, T137, T287
Mammi, L., M251
Manafiazar, G., M104
Manca, M. G., 460
Mancipe, E., M152, T102
Mandrile, G., 405
Mane, A., T81
Mann, E., 388, 421
Mann, S., 85
Mannion, D., 194
Marden, J. P ., 105, 432, T49, T50
Marella, C., T93
Maret, L., T244
Margolies, B., 294
Marcano, A. C., M99
Marciak, A., 18
Marcoles, M., M302, T187
Marcondes, M. I., 227
Marczak, L., M130, M131, M132
Marden, J. P ., 105, 432, T228
Marella, C., T93
Maret, L., T244
Margolies, B., 294
Marcano, A. C., M99
Marins, T., M21
Marins, T. N., 3, 38, 94, M215
Mark, T, 99
Marnet, P.-G., 119
Marrero-Torres, P. N., M77
Marriott, J., M258
Martin, C., T226
Martin, N., 387, T60
Martin, P., 176, 208, M101, M102, T53
Martin-Collado, D., 372
Martineau, R., T208
Martinez, B., T168
Martinez, J. A., M330
Martinez, N., M75
Martinez, N. P., 234
Martinez-Monteagudo, S., 219, 437, 485,
T70
Martins, C. M. M. R., 216, M112, M280
Martins, E., 482, T91
Martins, J., M158
Martins, L. F., M261
Masching, S., 415
Masello, M., M193, M291, T143
Massons, G., 292
Matsuki, K., M81
Matte, C., M229, M293
Mattioli, G. A., T21
Maxin, G., T208
Mayo, L., 309
Mayorga, E. J., 88, 92, 337, 338, M189,
M197, M201, 498
Mayorga, O. L., M151, M152, T101, T102,
T130
Mazon, G., T187
McArt, J., 85
McCann, J. C., M85, T155, T156
McCar, B., 416
McCarthy, M. M., T218
McClelland, S. C., M120
McConnell, C., 194
McCurdy, D. E., 35
McDermott, A., M130, M131, M132
McDonald, K., 207
McDougall, S., 189, 190
McFadden, J. W., 30, 103, 425, 426, 427,
M198, M218, M260, M263
McFadden, T. B., 457, M181
McGill, J. L., T287
McGuffey, R., 13
McGuire, M. A., T138, T211
McIntosh, D. W., 24
McIntyre, K. K., T180, T181
McKee, C. M., M245
McKeown, D. J., 401, M21, M178
McLoughlin, D. J., M119, M120, M139, M140
McManus, J. J., M330
McNamara, J. P., 14
McNeel, A., 382
McParland, S., 373, 459
McSweeney, C. S., 360
McSweeney, P., T81
McSweeney, P. L. H., 530
Mealey, R. H., 187
Mechor, G. D., T218
Medina, M., T117
Medrano, J. F., M105, T51, T52
Medrano-Galarza, C., 43, 280
Megonigal Jr., J. H., 377, 378
Mahabba, N., 428, M220, M221
Mehmood, M. U., 506, 507, 508
Mehta, D, M3
Meier, S., 203
Meikle, P. J., 101
Meinen, R., 410
Meireles, M. A., M122, M125, M126, M127,
M128
Meija, C., 166
Meldrum, A., M16
Melendez, P., 303, 309, 365, 367, T30, T32
Melgar, A., 257, T258, T260
Mellado, M., M331
Mello, R, T74, T75
Melzer, N., T49, T50
Menajovsky, S. B., 31, M259
Mendez, J. E., M19
Mendivil, M., T291
Mendonca, L. G. D., M191
Mendoza, A., 497
Mendoza-Martinez, G. D., M330
Menezes, I. R., 465
Meng, L., M111
Menichetti, T. B., 226, M60, M61, M200
Menichetti, T. B., M65
Menzies, P., 345
Mercadante, V. R. G., 314, T169
Mercali, G., M130, M131, M132
Mercier-Bouchard, D., T74
Merenda, V. R., T165
Merin, U., 283
Merriman, K. E., 180
Mertens, D. R., T281
Mesonero-Morales, A., M202
Messana, J. D., M314, T245
Mester, R. N., M153, T104, T118
Metzger, L., 437, 485, M3, T89, T93
Metzger, L. E., M10, M12
Metzger, S. A., 142
Meunier, B., T226
Mevis, D., 287
Mevis, D. J., 53
Meyer, D., M158, M305
Meyer, E. J., 233
Meza-Herrera, C. A., T289, T293
Mezzetti, M., T159, T290
Miccil, F. E., T294
Middeldorp, M., 150, M317
Middleton, E. L., M52
Middleton, J., 178
Mideros, S., 78
Mielenz, B., T261
Mielenz, M., T147, T148, T149
Miglior, F., 176, 206, 208, 210, 375, 463, M101, M102, M104, M105, M107, T47, T49, T50, T51, T52, T53
Milán Sendra, M. J., 117
Miles, A. M., T42
Miller, B., 245, T264
Miller, B. L., T132
Miller, M., T99
Miller, M. D., 334, 438
Miller, S., T51
Miller-Cushon, E. K., M62, T4, T5
Mills, D. A., 526
Mills, J., 54
Milora, N., T241
Min, D., 25, M171, T111
Minuti, A., T159, T290
Miqueo, E., T221
Mir, R. A., 454
Misztal, I., 206, 375, 462, 465, 466, 467, 468, M106
Mitchell, K., T264
Mitchell, K. E., T233
Mitchell, M. D., M254
Mitloehner, F., 414
Miura, M., M257, T212, T213, T214
Miyazawa, Y., T213, T214
Mizrahi, I., 253
Mjoun, K., M279
Moallem, U., 87, 307
Mogensen, L., 411
Moghaddam, G. A., M270
Mojica, B., M151, M152
Montagner, P., M183, T157
Monteiro, A. P. A., 94, M215
Monteiro, H. F., M36
Monteiro Jr., P. L. J., M306
Monteiro, H. F., M36
Montenegro, L., T117
Montgomery, S. R., T210
Moon, J. O., T202
Moore, D. A., 96
Moore, S., 309, 365
Moore, S. A. E., M290
Moore, S. G., 303, 304, 313, T158
Moore-Foster, R., 181, 183
Moraes, J., M115, M116, M117, M124
Moraes, L., 8
Mora-Gutierrez, A., M110
Morais, V., M302
Morales, M. S., 215, 296
Morales, R., M268
Morales-Cruz, J. L., T293
Moran, A. W., 399
Moran, C., T75
Moraru, C. I., T88
Moreira, A. P. A., T266
Moreira, V., 197
Moreno, J., 202, 505, T46
Moreno-Avalos, S., T289
Morita, G., 201
Morris, D. L., T203
Morrison, S. Y., M74
Morgan, A. W., 399
Mongan, M., T86
Morgan, C., T75
Morin, E., 117
Morlacchini, M., T75
Morota, G., 201
Morrill, K. M., M78
Morris, D. L., T203
Mortenson, S. Y., M74
Moshiat, T., 54
Moura, D. C., 455, M277, M299, M312, M320
Mouthier, T. M. B., M40
Moyes, K. M., M71
Mugahal, D. H., 504
Mukhopadhyay, C. S., 490
Mukkada, H., 71
Mullen, K. A. E., 153, 168
Mulligan, F. J., 113, M245
Mullins, I., M22
Munawwar, B., 241
Muñiz-Colón, G., M188, M202, T129
Muñiz-Cruz, J. M., T129
Muñoz, C., 515, M268
Munoz, T., 27, T150
Munoz, R., 310
Mur-Navales, R., 310
Murphy, B. A., 235
Murphy, E., 445
Murphy, K. V., 165
Murphy, M. R., 78, T283
Murtaza, A. M., 297
Murtaza, S., 241
Murugesan, G. R., 369, 370
Musiy, L., M144, T71
Mustafa, A., M39
Mutsawanga, T., M210, M211, T220
Myers, A., 449
Myers, M. A., M295, T183
Myers, W. A., 427
N
Nakamura, M., T213
Naqvi, A., T53
Narayana, S. G., 176, T53
Nardone, A., 374
Nascimento, K., M124
Nash, C. G. R., 220
Navenkraw, C., 239, 308
Navedo-Guzmán, N., M77
Nawaz, M. Y., 33
Nayen, N., 93
Nayebzadeh, K., T70
Nayeri, S., M107
Nedelkov, K., M249
Negro, G., M91
Neha, N., M15
Neibling, H., M214
Nelson, B., M3
Nelson, C., M35, M91
Nelson, C. D., 28, 180, 454
Nestor Jr., K. E., M242
Neubauer, V., 368
Neuder, L., 33
Neves, A., 395
Neves, R. C., M93, M224
Neville, E. W., 113
Nguyen, T., M328
Nicolson, P. S. C., M32
Nicolini, P., 200
Niccoli, P. T., T136
Nielsen, B. K. K., T241
Niesen, A. M., 236
Niles, A. M., T154
Niles, M., 198
Nischler, E., 388
Niú, M., 515
Noble, R., 124
Nolan, D., 42, T187
Nolan, D. T., 29, 36
Nolan, M. B., 235
Noland, J., 438
Norell, R., T191
Norman, H. D., T45
Nova, C. H. P. C., M237
Nudda, A., 118, 460
Null, D. J., 205
Nunes Corrêa, M., M183, T157
Nuñez, T., T174, T175
Nuzback, D. E., 27, M92, T150
Nuzback, L., T206, T239
Nydam, D., 54, 143
O
O’Connell, J. R., 464
O’Mahony, J., 481
O’Regan, J., 481
O’Sullivan, M., 373
Oba, M., 165, 237, 244, M298
Obaid, R. S., T59
Oberg, C., 475, M139, M140
Oberg, T., M139
Obitsu, T., T9, T160, T167
Obritzhauser, W., 144, T31, T38
O’Callaghan, T., 212
O’Connell, J., 470
Oefner, P. J., 102
 AUTHOR INDEX

P

Paakala, E. P., 372
Pace, K. M., T103, T106, T115
Paddick, K. S., M259
Padmanabhan, A., 21
Padua, F. H., T20
Pagán-Morales, M., M202
Pagliarini, D. J., 233
Pajor, E. A., 285
Palillo, M. B., T107, T115, T118
Palladino, A., T185
Palladino, R. A., T173, T294
Palmonari, A., M251
Palmistro, V., 492, M252, M254
Pan, Y., 414
Pandalaneni, K., M4, T93
Pantoja, J., T24
Panzuti, C., 405
Papadopoulos, Y. A., T114
Park, J. S., T202
Park, J. W., T243
Park, Y. W., 20, M6, M136, M137
Parker Gaddis, K. L., 377, 378
Parra, D., M151, T130
Parsons, C. L. M., 149, M32
Parys, C., 148, 446, 447, M231, T27, T288
Pate, J., T43
Pate, R. T., 78, M41, M148
Pathak, D., M176
Peck-Cervantes, A. A., 283, 284, 285
Peconick, A. P., T250
Pedrini, C., T227
Pedro, R. A. N., T250, T252, T255, T256, T257
Peña-Alvarado, N., M202
Pérez-Guzmán, M. D., 120
Peris, C., 119
Perl, R., 46
Perrone, R. T., 482, T91
Perry, C. A., 30
Petersen, B., 247
Petersen, S. O., 514
Petersen, C., 414
Petersen, H., T211
Petersson-Wolfe, C. S., 36, 42, 52, M34, T187
Phillips, H., 80, 323, 520
Phillips, T., 40
Phipps, Z. C., 425, 426, M198, M218, M263
Piantoni, P., M265, M275
Picardi, M., T189
Picioli-Cappelli, F., T159, T290
Piera, M., 97
Pierce, K. M., 373, M245
Pighetti, G., 42, T187
Pighetti, G. E., 24
Pighetti, G. M., 36, 48, 175, 177, M63
Pineda, A., 440, T283
Pinedo, P., 194, 279, 356, 365, T30, T32
Piñeiro, J. M., 226, M60, M61, M65, M200
Pinheiro, A. A., T112
Pinkelton, S. A., 315, T182
Pinkerton, S. A., 166
Pinto, A., T238
Pinto, B. Q., M185
Pires, J. A. A., 366, M94
Pithua, P., 365
Pitta, D., 195, 254, T273, T279
Plaizier, J. C., 58, 59, 107, 108, 361, T14
Plastow, G., M104
Polmic, I., 466, 468
Poczynek, M., T266
Podsztutr, M., M91
Podsztutr, M. B., 28, 147, 180
Polo, J., T236
Polsky, L. B., 315, T182
Polukis, S., M253
Polukis, S. A., M153, T103, T104, T106, T107, T115, T118
Pomeroy, B., 57
Poncheki, J. K., M226, T285
Pont, J. M., M222
Pooch, S., 309, 365, 367, T32
Pooch, S. E., 303, 304, 313
Rude, B. J., 40, M246
Ruegg, P., 358
Ruegg, P. L., 138, 142, T15
Ruh, K. J., 77
Rui, Y., 170
Rui, Y. L., 161, M26, M51
Rui-Cortes, T., M319
Rui-Sanchez, A., 510
Rupp, R., T40
Rushen, J., 43, 280, M55, T186
Rusk, R., T287
Russi, J. P., T158
Russo, V., T244
Rutherford, T., M147
Rutter, S. M., 354
Ryan, C. M., M47, M303
Ryan, K., T36
Ryan, K. T., M148
Rychlik, M., T148

S

Sachdev, S. S., 306
Sadri, H., 84, M190, M196
Sah, S., M204
Sailer, K. J., M236, M278, T26
Sailer, S. J., T163
Sain-Martin, M., T21
Salaberry, K. J., M236, M278, T26
Salama, A. A. K., 93, 122, 340, 398, 402, 428, M220, M221, M240, T291, T292
Salama, A. K. K., 264
Salas-Reyes, I. G., T193
Salazar, L., M302
Saldaña, M., 219
Salero, J., T292
Saleem, F., 104
Sales, D. C., T76
Salfer, I. J., 518, T276
Salotti-Souza, B. M., M143
Salum, P., 299, M114
Samii, S. S., 427, M198, M260
San Vito, E., M314, T245
Sanchez, A., T17
Sanchez, R. C., M268
Sanchez-Duarte, J. L., 433, M281, M286
Sanchez-Rodriguez, H. L., M188, M202, T129
Santana, A., 70
Santana, O., T224
Santana, R. A. V., 322, M312, M320
Santos, A., T225
Santos, A. R., T165
Santos, J. E., M82
Santos, J. E. P., 28, 147, 234, 453, 454, M75, M91
Santos, J. F., T255
Santos, M. V., 216, M112, M280
Santos, R., T227
Santos, T. T., M261
Santos, V. G., M182, T168
Santschi, D. E., T207
San Fernandez, M. V., 364
Sarem, B., 148, 446, 447, T27
Sargolzaei, M., 204, 206, 463, T49, T50, T51
Sarma, H. D., 306
Sarramone, C. G., T21
Sartori, C., 186
Sato, H., T213
Sato, T., M67, M81
Sattar, A., 241, 506, 507, 508
Sauerwein, H., 84, 136, M190, M196, T146, T149
Sauls, J. A., M191
Sauvant, D., 121
Savage, R. M., M153, T103, T104, T106, T107, T115, T118
Saylor, B., 25, M171, T111
Scheffler, T. L., 147
Schenkel, F., 204, M102, T49, T50
Schenkel, F. S., 206, 375, 463, M107, T47, T48, T51
Schentifer, R., 73
Schep, J., M152
Schatzmayr, D., 415
Schatzmayr, G., T35
Schramm, I., M274
Schmied, A. J., M243
Schmitt, E., T267
Schmitz-Esser, S., 388, 421
Schoen, K. M., 126, 364
Schoenfuss, T., T54, T83
Scholte, C. M., M71
Schone, C. R., T274
Schramm, H., 95
Schroeder, G. F., M71, M265, M275
Schroeder, S. G., M103
Schuberth, H. J., T147, T148
Schuck, P., 482, T91
Schueler, L., 521
Schumenn, G., T177
Schumenn, G. M., 45, 145, 226, M31, M60, M61, M65, M200, T170
Schuermann, Y., M39

161
Shenkoru, T., M36, T209
Shepardson, R. P., M289
Shepherd, M., M332
Shi, H., T248
Shi, K., M173
Shi, Q., M90
Shimek, D., M66
Shimizu, S., T213
Shingfield, K. J., 255, 260, 515
Shinoda, A., T167
Shinzato, I., M257, T212, T213, T214
Shipandeni, M. N. T., M267
Shirazi-Beechey, S. P., 399
Shirmohammadi, S., M270
Shock, D., 223
Shonka-Martin, B. N., 211
Shouse, C. S., 88, 92, 337, 338, 498, M189, M197, M201, M256, M316, T241
Sichler, V. B., 166
Siddique, A., 20, M6, M136, M137
Siebert, L., 177
Sierra, A., M152
Sierra, A. M., T101
Siewert, J. M., 321
Sigdel, A., 379
Silanikove, N., 122
Silberberg, M., T226
Silper, B. F., 315, T182
Silva, A. C., T251
Silva, A. P., T251
Silva, B. O., M261
Silva, C. R. J., T91
Silva, E., M122, M125, M126, M127, M128
Silva, E. B., T115
Silva, E. D., M179, T134
Silva, E. P. E., T76
Silva, F. F., T48
Silva, F. L. M., M165, T125, T251
Silva, G. G., M318
Silva, H., M115, M116, M117, M123, M129
Silva, J. B. A., T176
Silva, J. C., T250
Silva, K. T., T250
Silva, L. G., 140, M33, M36, T165, T209
Silva, M. D., T251, T266
Silva, M. S., T44
Silva, R. B., T252, T255, T256, T257
Silva, W. R., T255, T256, T257
Silva Filho, W. I., 75
Silva-del-Rio, N., 366, M83, M84, M94, M158, M167
Silveira, A. C. P., T91
Simeonov, M., M249
Simioni, T. A., M314
Sims, R. C., M258
Sinclair, L. A., 72, 112
Sipka, A., 54, 57
Skarulupka, J. H., 142
Skenandore, C., 305, M185
Skibiel, A. L., 166, 400, 487, 489, M20
Slater, C. J., M203, T164
Slyvka, I., M144, T71
Smid, A. M. C., 49
Smink, B., T180, T181
Smith, M. E., T120
Smith, M. L., 258, M153, T103, T104, T106, T107, T115, T118
Smith, S., M140
Smith, T. N., M21, T280
Smith, W. A., M199
Snelling, T., 255
Snodgrass, J. A., M75
Sobrinho, A. G. S., T245
Soder, K., 74, 322, M157, T176
Soderholm, C., M250
Sölkner, J., 64
Solórzano, L. C., M321, M323
Solórzano, L. L., M321, M323
Soltani, M., T64
Sommer, A., M243
Sondericker, K., 169
Song, Y., M18, M27
Sonnenberg, A. S. M., M40
Sordillo, L., 5, 188, M28
Sordillo, L. M., T161
Sorensen, A. C., 65
Sorge, E. L., T205
Souza, A. P., M226, T285
Souza, P. M., M226, T285
Souza, R., 328
Spears, J. W., 456
Spangler, M. L., 420
Sparkman, K. J., 362
Sparks, D. L., M246
Spears, J. W., 456
Spencer, J., T153, T191
Speranza, A., T77
Spitzer, A., T297
Sprunck, A. R., T201
Spurlock, D. M., 328, 469, 519, M25
St. Yves, A., M39
Stachowicz, K., 203
Stanton, C., 212
Stanton, M. E., 177
Steele, M., 237, M18
Steele, M. A., 150, 244, M27, M298, M317
Steele, N. M., 52, M34
Steelman, A., 305
Steibel, J. O., 305
Steinberg, D., 392
Stoiber, C., 305
Steibel, J. P., 33
Steinberg, D., 392
Stephani, R., 482
Stephas, E. L., T132
Sterle, J. A., 270
Stern, M. D., 77
Stevenson, J. S., M191
Stewart, J. S., 314, M73, T169
Stewart, P. S., 291
Stivin, S. C. B., M229, M293, T7
Stoddard, G., 248
Stoffel, C., M264
Stoiber, C., 415, T35
Stone, A., 42, T187
Stone, A. E., 36, 154, 353, 355
Stone, V., M229, M293
Storlien, T. M., 515
Stothard, P., M46
St-Pierre, N. R., 341
Stratton, J., T57
Strieder-Barboza, C., 179, 537, M30, T161, T269, T271
Strozzi, F., 255
Su, H., M160, M166, M168, T126, T127
Suarez-Mena, F. X., 330, T121, T122, T123, T124, T198, T199, T200
Such, X., 119, 340, 396, M221
Südekum, K.-H., 73, M243, T146
Suen, G., 142, T209
Suero-Pérez, I. I., M188
Sugai, N. J., T169
Sugino, T., 237, 244, T9, T160, T167
Sukhka, P., M49
Suliman, H., 54
Suliman, R., M15, T58
Sullivan, H., T28
Sultana, H., 75, M35
Sulzberger, S., T36
Sulzberger, S. A., T283
Sun, B., M276
Sun, C., 202, T46
Sun, F., M207, M284, T10
Sun, H., T151
Sun, H. Z., 86, 422, M173
Sun, M., M276
Sun, P., T247, T249
Sun, Q. L., M108
Sun, Y., M265
Sungn, K. I., M89
Sunkesula, V., M12
Susenbeth, A., T259
Sutariya, S., M15
Svennersten-Sjaunja, K., 320
Swanson, K., 172, M53, M324
Sweeney, R., 195
Sweeney, R. W., 286
Sweett, H., T52
Sugall, R., M19
T

Taghizadeh, A., M270
Tahir, M. Z., 507
Taibi, M., M39
Takao, Y., T9
Takya, C., T225, T227
Takao, Y., T9
Takiya, C., M39
Takin, J., T138
Takorov, N., M249
Toledo, M., M262
Toledo, M. Z., M306
Tomasula, P. M., T62, T90
Tomaszewski, M. A., 271
Toome, A., M43
Tomlinson, D., T143
Tomsula, P. M., T62, T90
Tomaszewski, M. A., 271
Tong, Y., M9
Tongel, P., 51
Tongrueng, S., 308
Tonghati, H., T76
Tucker, M. E., 377, 461, 464
Toral, P. G., 260, 264, M240, T292
Toro-Mujica, P., 215, 296
Torreclillas, J. A., T245
Toro, J., M318
Toro, N., 428
Torr, J., M401, M178
Torrres-Crespo, M. A., M316
Toro-Ruiz, W., M202
Tracy, D., 167
Tran, M., T63
Treaschis, D., T3
Tremblay, G., M162, M208
Tremblay, G. F., M322, T114, T119
Tremblay, M., T180, T181
Trevisi, E., 90, 363, 446, 447, M85, T27, T159, T277, T288, T290
Tricarico, J., 412
Trieb, J., M54
Trimborn, M., M243
Trindade, J. S., M169
Trincar, M., T71
Trisco, J., M54
Trinh, M., M237
Trösch, A., M237
Troscher, A., M237
Tröscher, A., M237
Tröscher, A., M237
Troy, W. E., 364
Trujillo, A. I., M271
Truman, C., M22
Truman, C. M., 132, 160
Trutwin, V. R., 434, 435, M250
Tsai, C. Y., T13
Tsai, I. C., 353, 355
Tsasri, O., M144, T71
Tsuruta, S., 465, M106
Tu, Y., 111
Tucson, M., M22
Truchler, A., T147, T148, T149
Tucker, C., M54
Tucker, H., T272
Tucker, H. L. M., 149
Tunick, M. H., T62
Turic, E., T21
Turiel, M. P., T173, T185
Turiel, P., T178
Turnbull, B., 323, 520
Turnbull, R., 80
Turney, A., M255
U

Udehiya, R., M176
Undersander, D. J., M161
Ungerfeld, E. M., M206, M268
Urban, S. A., T44, T56, T76
Uriarte, E., T295
Uriyapongson, S., 239
Urrutia, N. L., M262
Ustunol, Z., T298
Utt, M. D., 505
Uzue, N. P., 131

V

Vadas, P. A., M212
Vaidya, B. N., 20
Vailati-Riboni, M., 492, 501, M252, M254, T36, T155, T156
Valencia, A., T168
Valenzuela, H., 279
Valledesabres, A., 366, M83, M84, M94
Valle, E. D., M331
Van Amburgh, M. E., M291, M306, T120, T16, T231
van den Borne, J. J. G. C., T149
Van den Broeck, W., T145
van der Kamp, A. J., T181
Van der Meerin, P., M244
van der Voort, M., 318
van der Wal, F. J., 53
Van Eenennnaam, A. L., 191, 222, M80
Van Hekken, D. L., T62
van Niekerk, J. K., 150, 244, M317
Van Os, J., M54
Van Poucke, M., T145
Van Roekel, I. J., T132
van Straalen, W., M238
van Tassell, M., T99
Vanacker, N., T139, T194
Vanamala, J., T273
Vanasse, A., M164
VandeHaar, M. E., T216, T231
Van Raden, P., 470
Van Raden, P. M., 205, 209, 377, 461, 462, 464, M100, T45
Vardhanabhuti, B., M9, M14, M48, M49
Vargas, J., M152, T101
Vargas, J. A. C., M41
Vargas-Bello-Pérez, E., 215, 296
Vargas-Rodriguez, C. F., T287
Vasconcelos, J. L. M., 315, M99, T182, T190
Vasquez, A. K., 143
Vasseur, E., M55, T186
AUTHOR INDEX

Y

Yahvah, K. M., T138
Yam, K. L., T90
Yamaguchi, T., T160
Yan, H., 418
Yan, T., M268
Yan, Y. H., M161
Yañez-Ruiz, D. R., 122
Yang, C. L., 413
Yang, J., 69
Yang, J. M., M258
Yang, K., M232
Yang, S. Y., M258, T202
Yang, X., T77
Yang, Y., 37, 84, 429
Yang, Y. X., M234
Yazdi, M. H., M326, T240
Ydstie, J. A., T235
Ylioja, C., T235
Ylioja, C. M., A, T133
Yoder, P. S., M319
Yohe, T. T., 149
Yohe, W. S. B., T132
Yoon, I., 107, 108, M186, T232, T254
Yoor, I., M325

Z

Zachut, M., 307
Zaffuto, M., T141
Zahmatkesh, D., M326
Zain, S. N. M., 290
Zambelis, A., M76
Zandkarimi, F., 56, M86
Zanella, M. B., M229, M293, T7
Zang, Y., 427, M260
Zanton, G. I., M287, M306
Zanizalski, K. P., 27, M92, T150
Zarate, M. A., 500
Zaror, V., 367
Zaros, L. G., T44
Zebeli, Q., 104, 368, 421
Zeeck, R., M316
Zeng, Q., 425, M218, M263
Zinicola, M. B., 238, 243
Zinn, R. A., T206
Zizmont, A., T83
Zou, Y., 493
Zuniga, J. E., 147, 454